

Multi-particle theory of superconductivity

Thomas Whitehead Gareth Conduit

Theory of Condensed Matter group

Cooper pair

Cooper pair has no center-of-mass momentum

Cooper pair can exchange states

Binding energy of a Cooper pair

Cooper pair on an imbalanced Fermi sea

Cooper pair on an imbalanced Fermi sea

Inaccessible states

States that can be correlated

Take advantage of all available states

Binding energy of a few-particle instability

$$E = (N_{\uparrow} + N_{\downarrow}) \omega_{\mathrm{D}} \exp\left(-\frac{(N_{\uparrow} + N_{\downarrow})\xi'}{gN_{\uparrow}N_{\downarrow}} \frac{N_{\mathrm{c}}}{v_{\mathrm{c}}}\right) \qquad E = 2 \omega_{\mathrm{D}} \exp\left(-\frac{2\xi'}{gv_{\mathrm{c}}}\right)$$

Optimal number of up and down spin electrons in an instability

$$\frac{N_{\uparrow}}{N_{\downarrow}} = \frac{v_{\uparrow}}{v_{\downarrow}}$$

Exact diagonalization

Superconducting transition temperature

$$T_{\rm c} = \omega_{\rm D} \exp\left(-\frac{(N_{\uparrow} + N_{\downarrow})\xi'}{2gN_{\uparrow}N_{\downarrow}}\frac{N_{\rm c}}{v_{\rm c}}\right)$$

Optimal number of up and down spin electrons in an instability

$$\frac{N_{\uparrow}}{N_{\downarrow}} = \frac{v_{\uparrow}}{v_{\downarrow}}$$

Optimal number of up and down spin electrons in a Cooper particle is the **ratio** of the **density of states**

Cooper particle is the building block for SUPErCONDUCTING State, verified by Diffusion Monte Carlo simulations

Energetically **favorable** to FFLO state