

Artificial intelligence – a tool for the modern-day blacksmith

**Gareth Conduit** 

### Model **Sparse** datasets

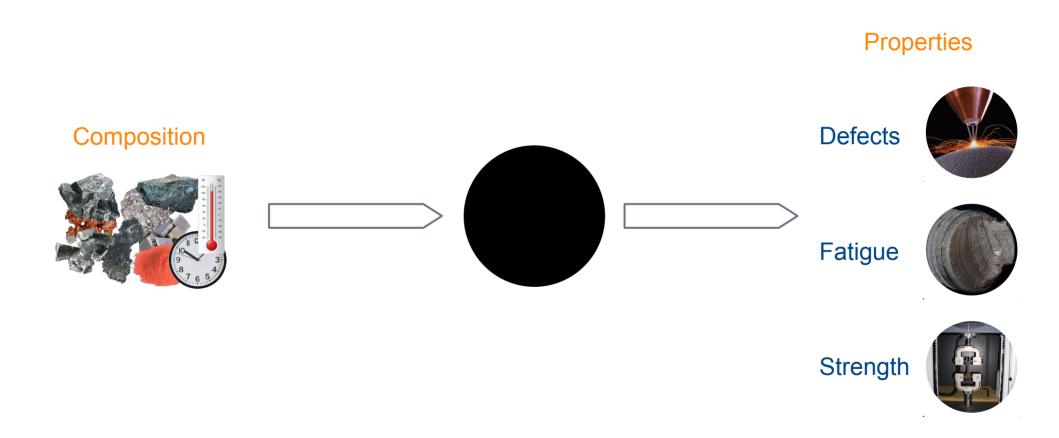
Exploit property-property relationships

Merge data, computer simulations, and physical laws

Exploit uncertainties to deliver most robust predictions

Extract information from **noise** itself

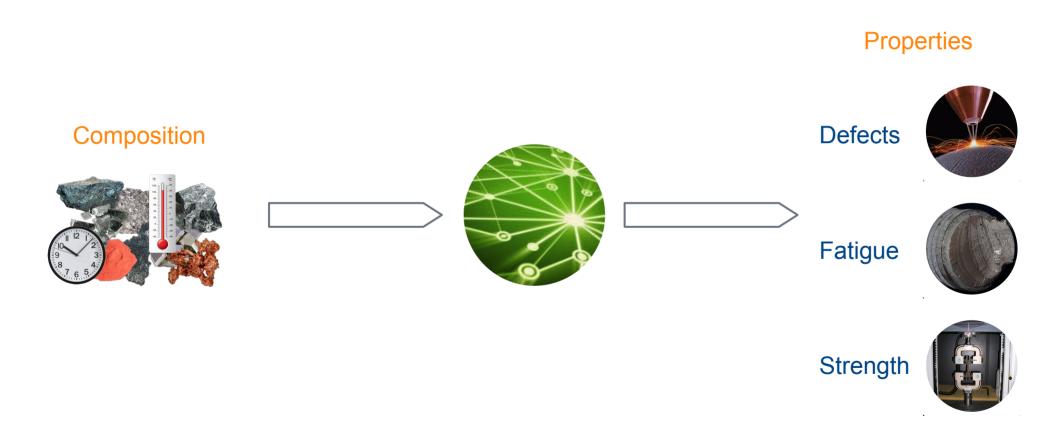
## Black box machine learning for materials design



### Train the machine learning



# Machine learning predicts material properties



# Property-property correlations to design nickel superalloy with Rolls Royce University Technology Centre





Dr Bryce Conduit



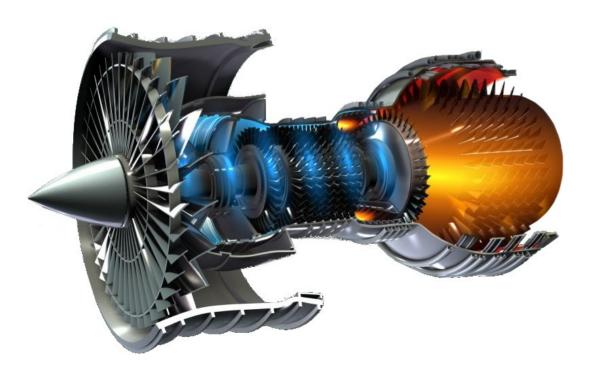
Professor Howard Stone



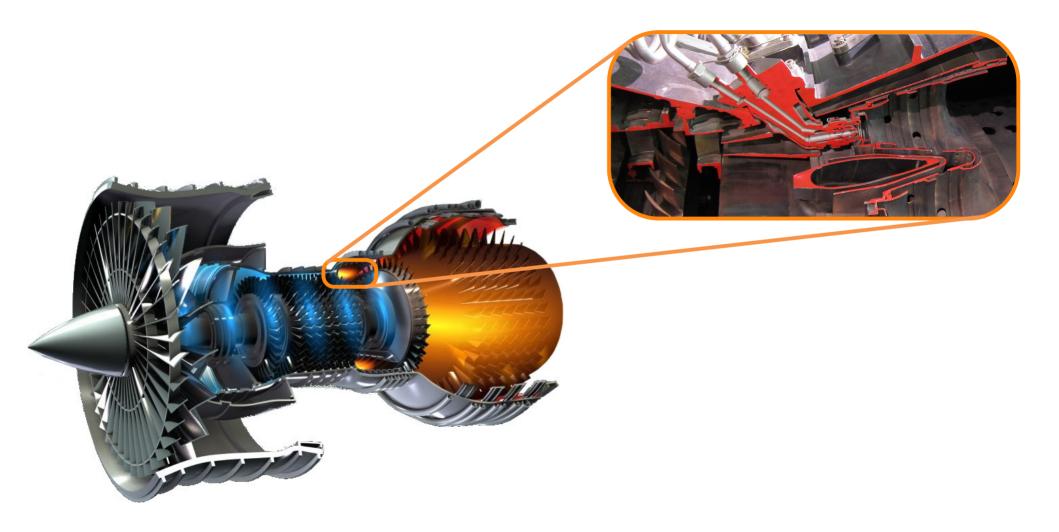
Dr Gareth Conduit

Probabilistic neural network identification of an alloy for direct laser deposition Materials & Design 168, 107644 (2019)

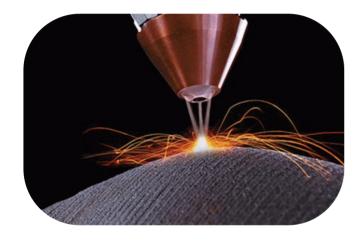
# Jet engine schematic



# Combustor in a jet engine



# Direct laser deposition



### Data available to model defect density



Composition and heat treatment space 30 dimensions

Requires 31 points to fit a hyperplane

Just 10 data entries available to model defect density

## Ability for printing and welding are strongly correlated



Laser



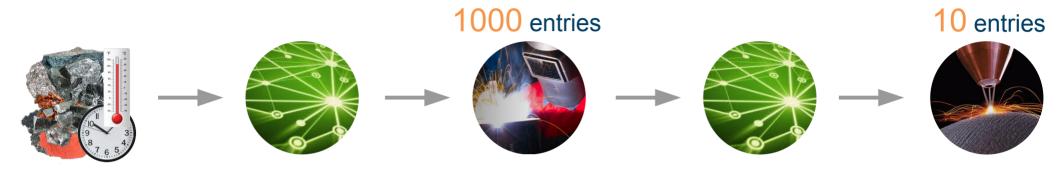
**Electricity** 

### First predict weldability



Use 1000 weldability entries to understand complex composition → weldability model

### Use weldability to predict defects formed



Use 1000 weldability entries to understand complex composition → weldability model

10 defects entries capture the simple weldability → defect relationship

Two interpolations aid composition → defects extrapolation

### Use CALPHAD to predict strength

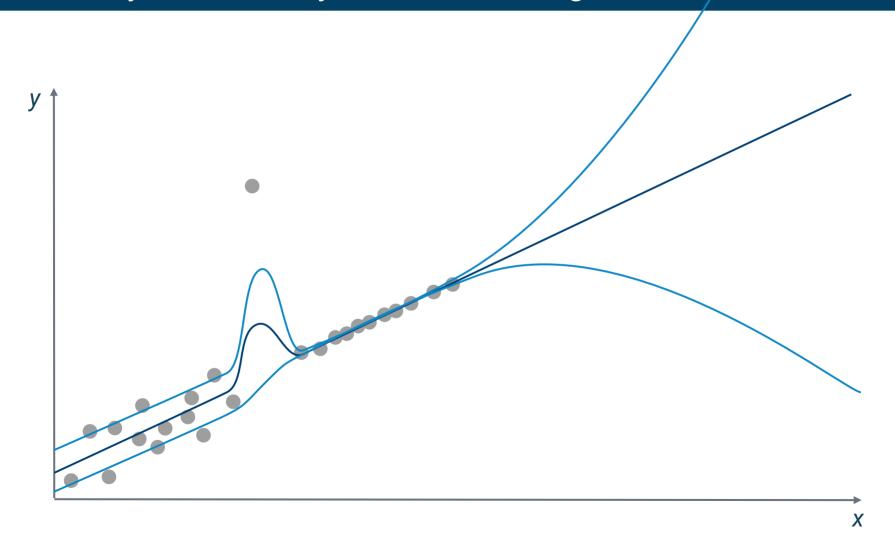


100,000 CALPHAD results to model complex composition → phase behavior

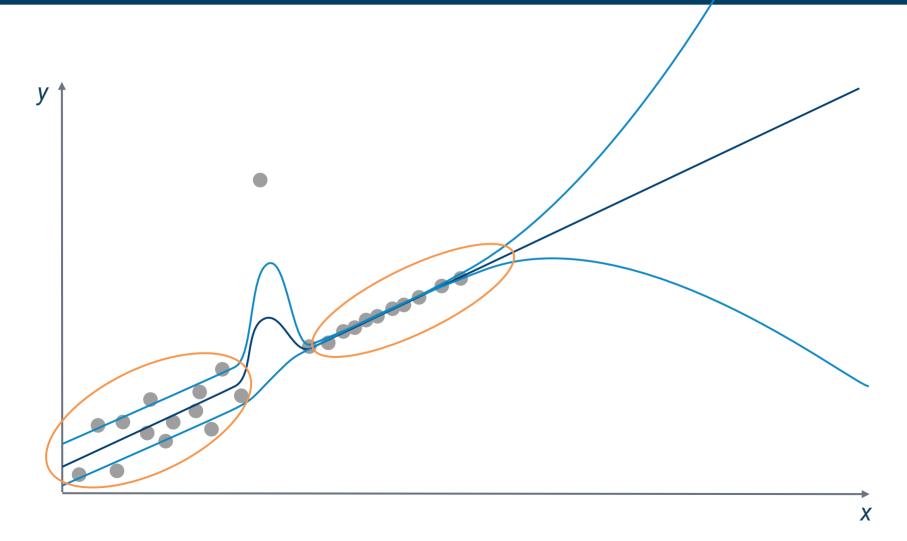
500 strength entries capture the phase behavior → strength relationship

Two interpolations aid the composition → strength extrapolation

# Uncertainty estimated by machine learning



# Focus design where confident



### Target properties

Elemental cost < 25 \$kg<sup>-1</sup>

Density < 8500 kgm<sup>-3</sup>

y' content < 25 wt%

Oxidation resistance < 0.3 mgcm<sup>-2</sup>

Defects < 0.15% defects

Phase stability > 99.0 wt%

y' solvus > 1000°C

Thermal resistance  $> 0.04 \text{ K}\Omega^{-1}\text{m}^{-3}$ 

Yield stress at 900°C > 200 MPa

Tensile strength at 900°C > 300 MPa

Tensile elongation at 700°C > 8%

1000hr stress rupture at 800°C > 100 MPa

Fatigue life at 500 MPa, 700°C > 10<sup>5</sup> cycles

### Composition and processing variables

Cr 19%

Co 4%

Mo 4.9%

W 1.2%

Zr 0.05%

**Nb** 3%









Ni





Al 2.9%



C 0.04%

B 0.01%



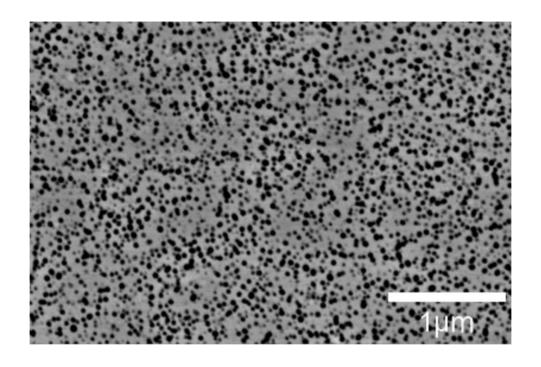
Expose 0.8



*Т*нт 1300°С



### Microstructure





Probabilistic neural network identification of an alloy for direct laser deposition B. Conduit, T. Illston, S. Baker, D. Vadegadde Duggappa, S. Harding, H. Stone & GJC Materials & Design **168**, 107644 (2019)

### Defects target

Elemental cost < 25 \$kg<sup>-1</sup>

Density < 8500 kgm<sup>-3</sup>

y' content < 25 wt%

Oxidation resistance < 0.3 mgcm<sup>-2</sup>

Defects < 0.15% defects

Phase stability > 99.0 wt%

y' solvus > 1000°C

Thermal resistance  $> 0.04 \text{ K}\Omega^{-1}\text{m}^{-3}$ 

Yield stress at 900°C > 200 MPa

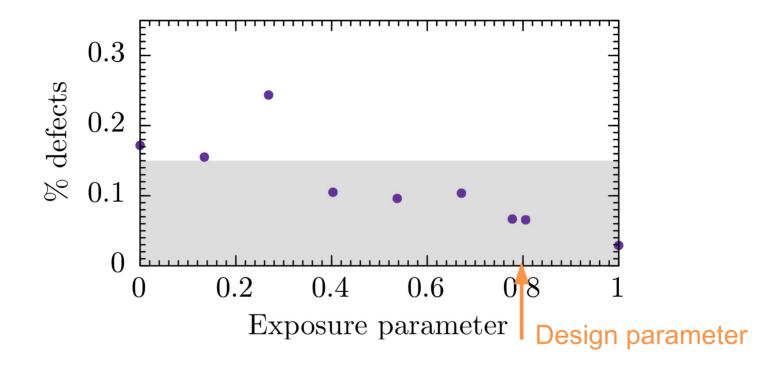
Tensile strength at 900°C > 300 MPa

Tensile elongation at 700°C > 8%

1000hr stress rupture at 800°C > 100 MPa

Fatigue life at 500 MPa, 700°C > 10<sup>5</sup> cycles

### Testing the defect density



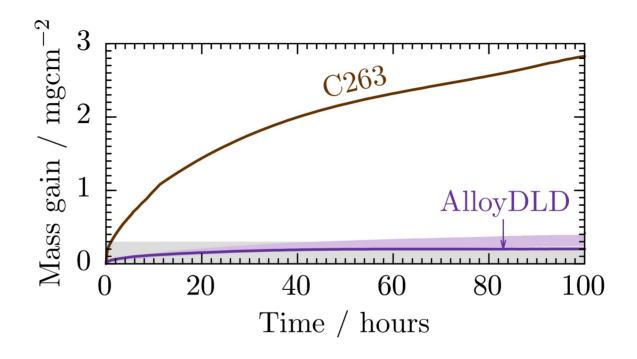


Probabilistic neural network identification of an alloy for direct laser deposition B. Conduit, T. Illston, S. Baker, D. Vadegadde Duggappa, S. Harding, H. Stone & GJC Materials & Design **168**, 107644 (2019)

### Oxidation target

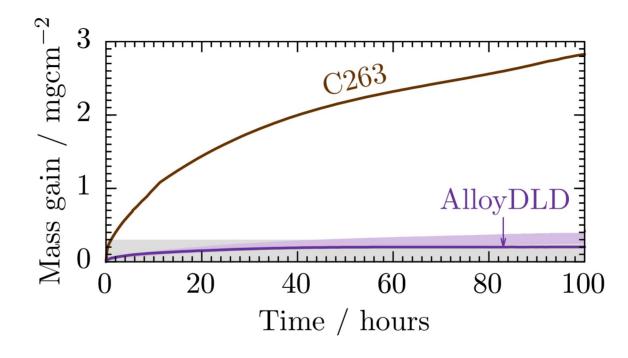
Elemental cost < 25 \$kg<sup>-1</sup> Density < 8500 kgm<sup>-3</sup> < 25 wt% y' content Oxidation resistance < 0.3 mgcm<sup>-2</sup> Defects < 0.15% defects Phase stability > 99.0 wt% > 1000°C y' solvus Thermal resistance  $> 0.04 \text{ K}\Omega^{-1}\text{m}^{-3}$ Yield stress at 900°C > 200 MPa > 300 MPa Tensile strength at 900°C > 8% Tensile elongation at 700°C 1000hr stress rupture at 800°C > 100 MPa Fatigue life at 500 MPa, 700°C > 10<sup>5</sup> cycles

### Testing the defect density





### Testing the defect density







# Exploit uncertainty to design concrete with Department of Civil Engineering









**Professor Janet Lees** 



Dr Gareth Conduit

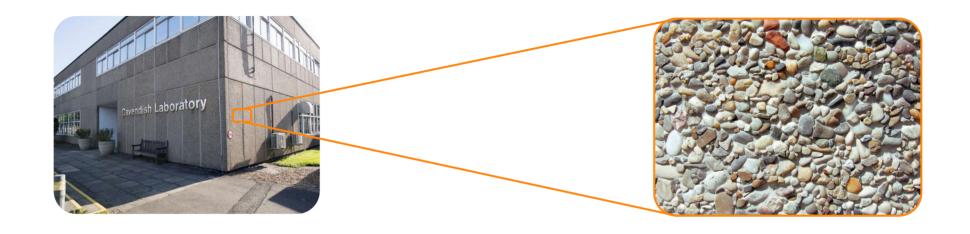
Unveil the unseen: exploit information hidden in noise, Applied Intelligence (2022)

Probabilistic selection and design of concrete using machine learning Data-Centric Engineering **4**, e9 (2023)

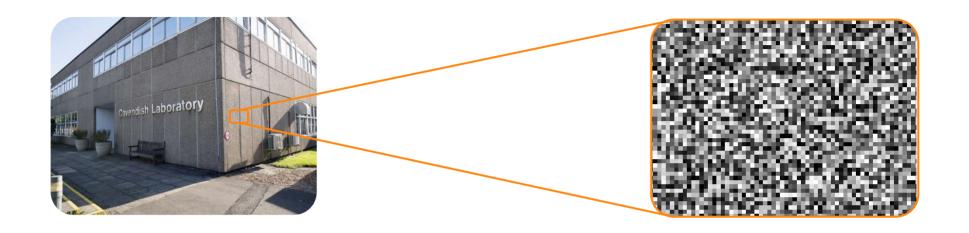
### Concrete in construction



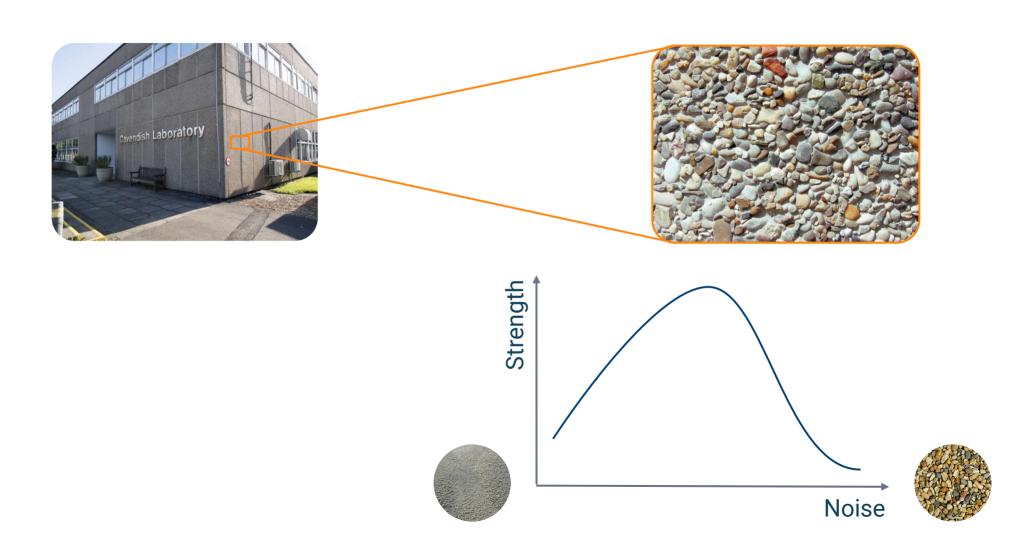
# Cement & aggregate look like noise



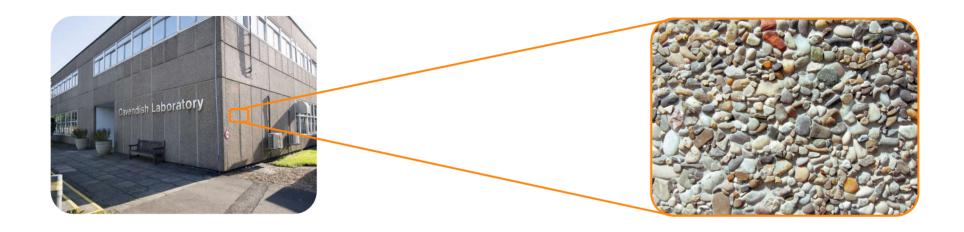
# Cement & aggregate look like noise



# Strength is related to noise

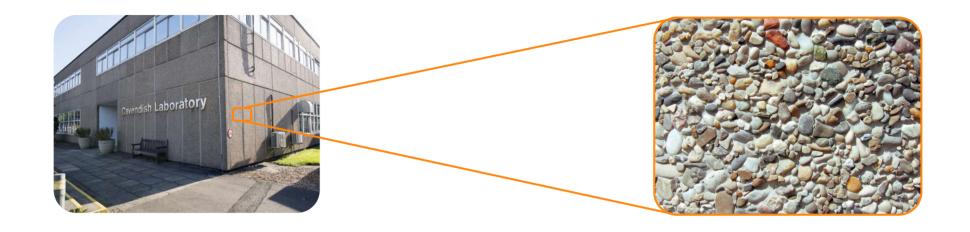


### Mission



Design environmentally friendly concrete

### Mission

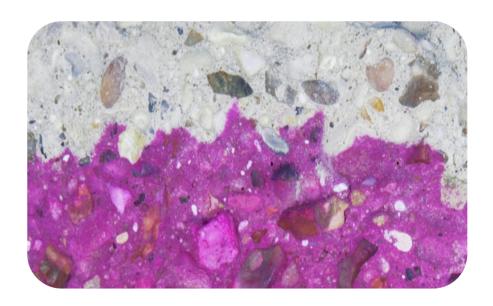


Design environmentally friendly concrete

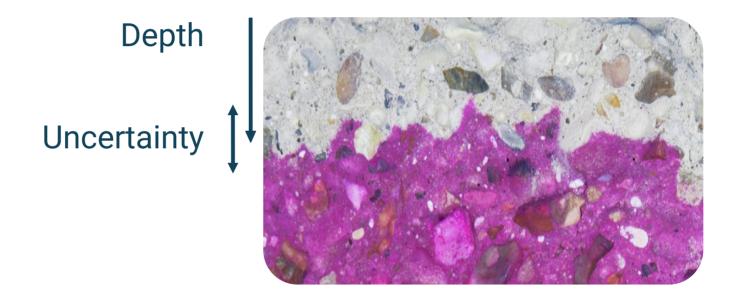
Experimentally validate the concrete

# Carbonation is the probe of noise

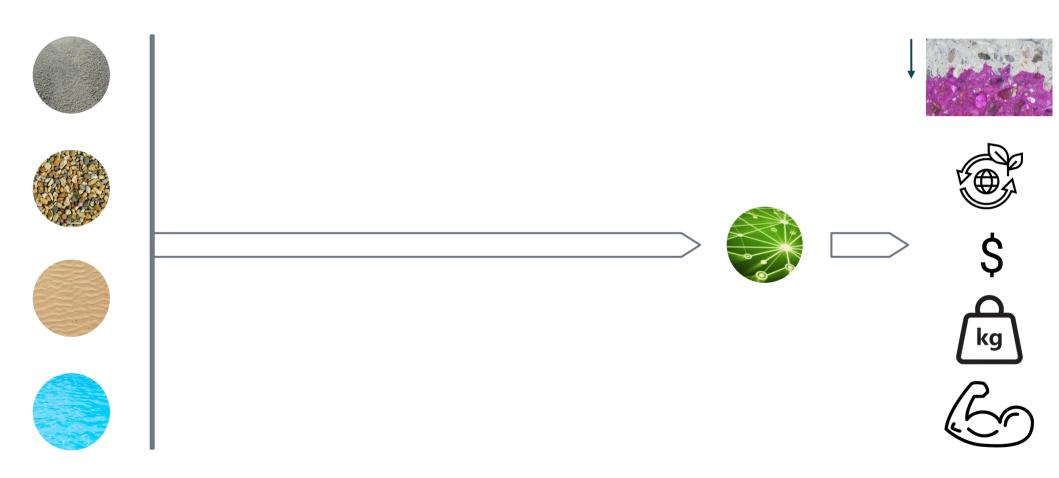




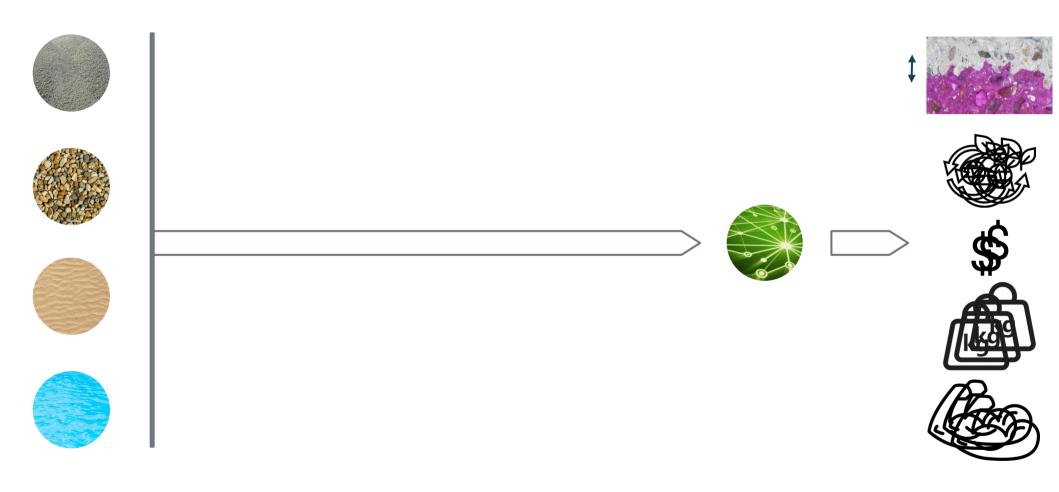
### Depth and uncertainty in carbonation



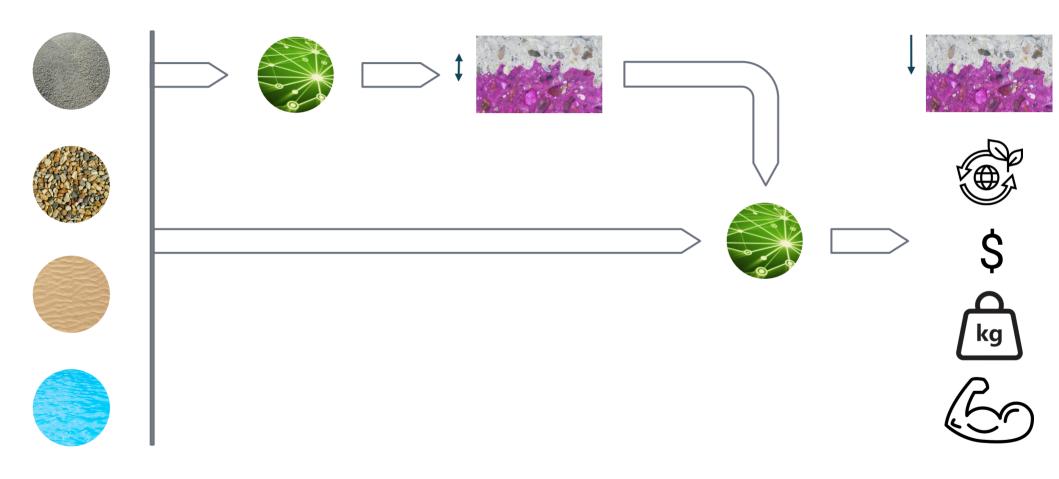
# Standard machine learning predicts expectation values



## Exploit machine learning uncertainty estimates for robust designs



## Machine learning exploits uncertainty



Unveil the unseen: exploit information hidden in noise, Applied Intelligence (2022)

### Concrete specification





< 2.34 mm day<sup>-1/2</sup>



environmental impact

< 0.107 kg CO<sub>2</sub> e kg<sup>-1</sup>



✓ cost

< 0.028 £ kg<sup>-1</sup>



density

< 2350 kg m<sup>-3</sup>



strength

> 20 MPa

## Concrete design



10.5% cement



48.4% gravel



32.6% sand



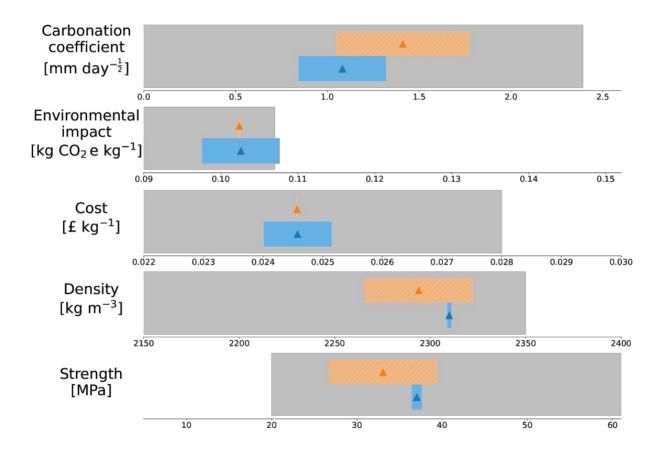
8.5% water

### Concrete manufacture



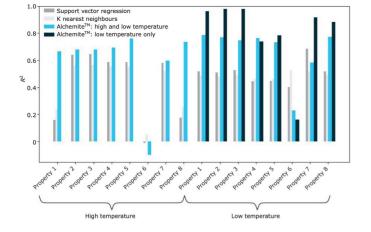
Probabilistic selection and design of concrete using machine learning JCF, BZ, JML & GJC, Data-Centric Engineering 4, e9 (2023)

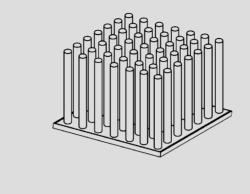
### Experimental validation of the proposed mix

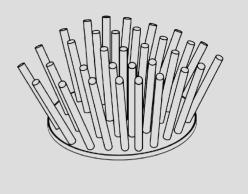


Model
Experiment
Target

Probabilistic selection and design of concrete using machine learning JCF, BZ, JML & GJC, Data-Centric Engineering **4**, e9 (2023)







Johnson Matthey Technology Review **66**, 130 (2022)



NASA Technical Memorandum 20220008637



| 1000              |           |          |         |
|-------------------|-----------|----------|---------|
| g 4000            |           |          |         |
| E 4000 3000       |           |          |         |
| < 3000 €          |           |          |         |
| 8 2000            |           | + +      |         |
| Hardness 1000     | • •       |          |         |
| ₽ 1000 E          |           |          | <u></u> |
| E 1000            |           |          | _       |
|                   |           |          |         |
| $0 \frac{1}{250}$ | 0 500     | 750 1000 | )       |
|                   | Temperat  |          |         |
|                   | - cmperae |          |         |



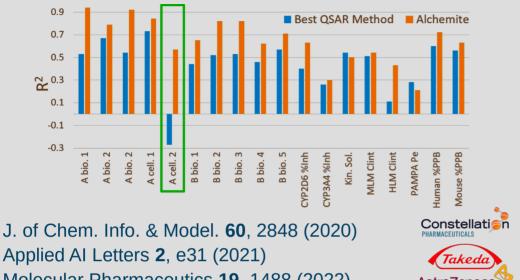
|   | Alloy                     | Source | $\mathbf{ANN}$ | $\Delta_{\sigma}$ | $\bf Actual$   |
|---|---------------------------|--------|----------------|-------------------|----------------|
| _ | Steel AISI 301L           | 193    | 269            | 5                 | 238[23]        |
|   | Steel AISI 301            | 193    | 267            | 5                 | 221[23]        |
|   | Al 1080 H18               | 51     | 124            | 5                 | 120[23]        |
|   | ${ m Al}5083{ m wrought}$ | 117    | 191            | 14                | 300,190[4, 23] |
|   | ${ m Al}5086{ m wrought}$ | 110    | 172            | 11                | 269,131[4, 23] |
|   | Al 5454 wrought           | 102    | 149            | 14                | 124[23]        |
|   | Al 5456 wrought           | 130    | 201            | 11                | 165[23]        |
|   | INCONEL600                | 223    | 278            | 10                | $\geq 550[23]$ |

Materials & Design **131**, 358 (2017) Scripta Materialia **146**, 82 (2018) Data Centric Engineering **3**, e30 (2022)



Computational Materials
Science **147**, 176 (2018)





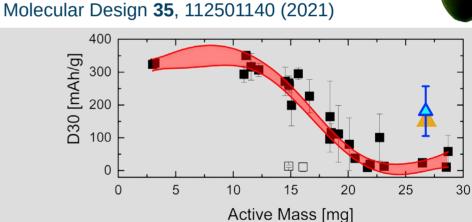


Journal of Computer-Aided

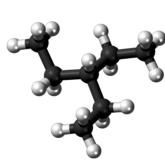


Applied AI Letters 2, e31 (2021) Molecular Pharmaceutics 19, 1488 (2022)

**AstraZeneca** 









Nature Machine Intelligence 2, 161 (2020) Cell Reports Physical Science 2, 100683 (2021)



Fluid Phase Equilibria **501**, 112259 (2019) Journal of Chemical Physics 153, 014102 (2020)

### Intellegens offers the Alchemite™ product family









Lab systems





Software & scripts





Sharing & collaboration

### **Alchemite™ Analytics**

Deep data insights on your desktop Guide experiments, predict, design, optimize

#### **Alchemite™ Engine**

Integrate into your workflow (API, Python)
Advanced configuration, enterprise deployment

Alchemite™ Academic Programme

Access Alchemite™ for academic research

Merge computer simulations with experimental data and exploit property-property relationships to circumvent missing data

Designed and experimentally verified alloy for direct laser deposition

Exploited information in noise to design experimentally verified concrete

Software product taken to market through startup Intellegens