

p-wave superconductivity in the itinerant ferromagnet

Gareth Conduit Pascal Bugnion Richard Needs Pablo López Ríos Jonathan Lloyd-Williams

TCM Group, Department of Physics

$$H = KE + V_{e-i} + V_{e-e}$$

$$\bar{E} = \frac{\int \bar{\psi} \hat{H} \psi \, \mathrm{d} \mathbf{r}}{\int \bar{\psi} \psi \, \mathrm{d} \mathbf{r}} = \int_{\bar{\psi} \psi} \bar{\psi}^{-1} \hat{H} \psi \, \mathrm{d} \mathbf{r}$$

Standard

$$H = KE + V_{e-i} + V_{e-e}$$

$$H = KE + V_{e-i} + V_{e-e}$$

Smooth background

Fewer electrons

$$H = KE + V_{e-i} + V_{e-e}$$

Smooth background

Scattering in ultracold atom gases

$$|F = 1/2, m_F = 1/2 \rangle \longrightarrow \qquad \text{Up spin electron}$$

$$|F = 1/2, m_F = -1/2 \rangle \longrightarrow \qquad \text{Down spin electron}$$

$$(F = 1/2, m_F = -1/2) \land (F = 1/2, m_F = -1/2) \land (F = 1/2, m_F = -1/2)$$

Scattering in ultracold atom gases

Scattering potentials

Underlying repulsive

Effective repulsive

Scattering potentials

Scattering potentials

Construction of a pseudopotential

Construction of a pseudopotential

Construction of a pseudopotential

Trial form for the pseudopotential

$$V_{\text{PP}}(r) = \begin{cases} \left(1 - \frac{r}{c}\right)^2 \left[v_1\left(\frac{1}{2} + \frac{r}{c}\right) + \sum_{i=2}^{N_v} v_i\left(\frac{r}{c}\right)^i\right] & r < c \\ 0 & r > c \end{cases}$$

Trial form for the pseudopotential

$$V_{\text{PP}}(r) = \begin{cases} \left(1 - \frac{r}{c}\right)^2 \left[v_1\left(\frac{1}{2} + \frac{r}{c}\right) + \sum_{i=2}^{N_v} v_i\left(\frac{r}{c}\right)^i\right] & r < c \\ 0 & r > c \end{cases}$$

$$\langle \Delta \delta^2 \rangle = \sum_{I=0}^{I_{\text{max}}} \int_{0}^{k_{\text{F}}} \left[\frac{d \ln \psi_{\text{PP}}(k,I)}{dr} \bigg|_{c} - \frac{d \ln \psi_{\text{cont}}(k,I)}{dr} \bigg|_{c} \right]^{2} dk$$

Optimal pseudopotential

Pseudopotential: scattering phase shift

Pseudopotential: two atoms in a trap

Pseudopotential: two atoms in a trap

Pseudopotentials summary

Repulsive & attractive state: 100 times more accurate, 1000 times faster

Bound state: 1000 times more accurate, 1000 times faster

Stoner Hamiltonian

$$H = -\frac{\nabla^2}{2} + 4\pi a \delta(\boldsymbol{r}_{\uparrow} - \boldsymbol{r}_{\downarrow})$$

Theories of ferromagnetism

Stoner mean-field theory	Second order	k⊧a=1.57
Fluctuations beyond Hertz-Millis	First order	-
Polaron theory	First order	-
Field theory	First order	k⊧a=1.054
Tan relations	No magnetism	-
DMC top hat	First order	k⊧a=0.81(2)
Hartree Fock MC	First order	k⊧a=0.83(2)

Stoner Hamiltonian ground state magnetization

Landau expansion

 $F(M) = F(0) + v_2 M^2 + v_4 M^4 + v_6 M^6$

Landau expansion

$$F(M) = F(0) + v_2 M^2 + v_4 M^4 + v_6 M^6$$

Theories of ferromagnetism

Stoner mean-field theory	Second order	k⊧a=1.57
Fluctuations beyond Hertz-Millis	First order	-
Polaron theory	First order	-
Field theory	First order	k⊧a=1.054
Tan relations	No magnetism	-
DMC top hat	First order	k⊧a=0.81(2)
Hartree Fock MC	First order	k⊧a=0.83(2)
DMC pseudopotential	Second order	k⊧a=0.683(1)

Fluctuation contributions

Fluctuation contributions drive pairing

Fluctuation contributions drive pairing

UGe₂, URhGe, UCoGe, ZrZn₂, Sr₂RuO₄, LaNiGa₂, LaNiC₂

Emergence of superconducting order

Fluctuation contributions: pair correlation function

$$g(r) = \langle n_{\uparrow}(r + r') n_{\uparrow}(r') \rangle$$

Pair correlation function

Coulomb pseudopotential

Monte Carlo error with Coulomb pseudopotential

Configuration interaction with Coulomb pseudopotential

Created a pseudopotential for the contact interaction that is 100 times more accurate, 1000 times faster

Stoner Hamiltonian displays second order ferromagnetic phase transition and *p*-wave ordering

Created a pseudopotential for the Coulomb interaction that is 30 times faster