

Many-body theory: Concepts

Gareth Conduit

TCM Group, Department of Physics

Characteristics of a many-body interacting system

Characteristics of a many-body interacting system

Characteristics of a quantum system

Photoelectric effect

Electrons: many-body interacting and quantum

10²⁷ interacting electrons

Fermi temperature 30,000K

Electrons: Hamiltonian

$$\hat{H} = \sum_{i=1}^{N} \frac{\hat{p}_{i}^{2}}{2m} + \sum_{i=1}^{M} \frac{\hat{P}_{i}^{2}}{2m}$$
$$+ \sum_{i=1}^{N} \sum_{j < i} \frac{e^{2}}{4\pi\epsilon_{0} |\vec{r}_{i} - \vec{r}_{j}|}$$
$$+ \sum_{i=1}^{N} \sum_{j=1}^{M} \frac{Z_{j} e^{2}}{4\pi\epsilon_{0} |\vec{r}_{i} - \vec{R}_{j}|}$$
$$+ \sum_{i=1}^{M} \sum_{j < i} \frac{Z_{i} Z_{j} e^{2}}{4\pi\epsilon_{0} |\vec{R}_{i} - \vec{R}_{j}|}$$

 \hat{p}_i, \vec{r}_i

Momentum and position of electron *i*

 \hat{P}_i, \vec{R}_i Momentum and position of ion *i*

N, *M* Number of electrons and ions

Ultracold atomic gas: many-body interacting and quantum

10⁷ interacting atoms

0.1 *T*_F

Energy stored in an elastic band

Potential energy in elastic band

$$E = \frac{1}{2}kx^{2} = \frac{1}{2}Fx = \frac{1}{2}10 \times 0.1 = 0.5 \text{ J}$$

Energy stored in an elastic band

Potential energy in elastic band

$$E = \frac{1}{2}kx^{2} = \frac{1}{2}Fx = \frac{1}{2}10 \times 0.1 = 0.5 \text{ J}$$

Kinetic energy in handgun bullet

$$E = \frac{1}{2}mv^2 = \frac{1}{2}0.005 \times 300^2 = 225 \,\mathrm{J}$$

Energy stored in an elastic band

Potential energy in elastic band

$$E = \frac{1}{2}kx^{2} = \frac{1}{2}Fx = \frac{1}{2}10 \times 0.1 = 0.5 \text{ J}$$

Kinetic energy in handgun bullet

$$E = \frac{1}{2}mv^2 = \frac{1}{2}0.005 \times 300^2 = 225 \,\mathrm{J}$$

Potential energy in enormous band

$$E = \frac{1}{2}kx^{2} = \frac{1}{2}Fx = \frac{1}{2}100 \times 5 = 250 \text{ J}$$

Chemical and structural properties

Why does carbon form diamond, graphene, nanotube, or buckyballs?

Electrical properties

Why do some metals superconduct at low temperatures?

Optical properties

How does photosynthesis occur?

Magnetic properties Why do high *T*c superconductors display magnetic order?

Approaches to study the system

Analytical Provides microscopic insights

Computational More general Complementary approximations

$$\hat{H} = \sum_{i=1}^{N} \frac{\hat{p}_{i}^{2}}{2m} + \sum_{i=1}^{M} \frac{\hat{P}_{i}^{2}}{2m}$$
$$+ \sum_{i=1}^{N} \sum_{j < i} \frac{e^{2}}{4\pi\epsilon_{0} |\vec{r}_{i} - \vec{r}_{j}|}$$
$$+ \sum_{i=1}^{N} \sum_{j=1}^{M} \frac{Z_{j}e^{2}}{4\pi\epsilon_{0} |\vec{r}_{i} - \vec{R}_{j}|}$$
$$+ \sum_{i=1}^{M} \sum_{j < i} \frac{Z_{i}Z_{j}e^{2}}{4\pi\epsilon_{0} |\vec{R}_{i} - \vec{R}_{j}|}$$

Experimental Exact solution

Experiments: determining the ground state

Lattice of a solid	It is hard to predict from the many-electron Hamiltonian that copper crystallizes in a fcc crystal structure. Computational techniques can compare the energy of fcc Cu to bcc Cu, but cannot exclude other structures. X-ray diffraction experiments show that Cu crystallizes in a fcc structure, providing a platform for theoretical analysis.
Dominant terms in the Hamiltonian	There is currently no satisfactory theoretical understanding of the phenomenon of high- <i>T</i> c superconductivity, but experimental techniques have delivered a lot of clues (and some red herrings) about how the physics of high- <i>T</i> c materials differs from that of ordinary superconductors.
New strongly correlated effects	Within condensed matter physics, there is a very exciting interplay between experiment and theory: Sometimes theory is first to predict effects, often experiments discover interesting novel phenomena which then stimulate theoretical explanations, and may lead to general advances in understanding of many-body physical phenomena.

Experimental stimulus promotes the system from its ground state into an excited state, and the response provides insights into the underlying microscopic properties

Response	Stimulus
Electrical	Applied electric field
Optical absorption	Electromagnetic wave
Temperature response	Heat flux
Magnetic moment	External magnetic field
Attenuation of sound waves	External source of sound

Independent-electron approximation

Treats each electron as if it is moving in a periodic effective potential created by the ion cores Neglect electron-electron correlations

Hartree-Fock theory

Includes "exchange" related correlations between electrons by forcing the wave function to be a single Slater determinant of optimal single-particle orbitals Electrons of opposite spin remain uncorrelated

Density functional theory

Includes both exchange and other correlations between valance electrons.

Correlations included by approximating the electron density as being locally uniform

Quantum Monte Carlo methods

Use the Monte Carlo method to handle the many-dimensional integrals that arise Takes almost full account of electron-electron correlations

Exact diagonalization

Compute and diagonalize over all matrix elements Captures all electron-electron correlations within limits of the basis set size Adopt a complementary approach to the reductionist approach of other areas of physics. Identify key organizing principles on the relevant macroscopic length scale inspired by experiment.

Complex phenomena can emerge from very simple sets of rules, for example Conway's life

For a space that is populated

- Cell with one or no neighbors dies
- Cell with four or more neighbors dies
- For a space that is unpopulated
- Cell with three neighbors becomes populated

Critical phenomena: length scales diverge near to transitions insensitive to microscopic properties

Analytical: critical phenomena

Solutions to the Schrödinger equation, whether numerical or exact, can be very hard to interpret or even connect with observed phenomena.

Phenomenological models that capture the essential physics of the system whilst blocking out non-relevant features often provide deeper, more applicable and predictive insight into a particular problem.

Models can be justified from first principles, and parameters determined by experiment.

Analytical: constructing a model

Analytical: constructing a model

$$\hat{H} = \sum_{i=1}^{N} \frac{\hat{p}_{i}^{2}}{2m} + \sum_{i=1}^{N} \sum_{j < i} \frac{e^{2}}{4\pi\epsilon_{0} |\vec{r}_{i} - \vec{r}_{j}|} + \sum_{i=1}^{N} V(\vec{r}_{i})$$

Analytical: constructing a model

$$\hat{H} = -J \sum_{i=1}^{N} \hat{\vec{S}}_{i} \cdot \hat{\vec{S}}_{i+1}$$

Collective excitations

Ground state

Spin wave

Magnon: wave-like deviations of spins

Collective excitations

Ground state

Spin wave

Magnon: wave-like deviations of spins Plasmon: electron density displacements Phonon: wave of atom displacements Exciton: electron and hole bound Polariton: electron and photon bound

Outline of lectures

1) Concepts in many-body physics

- 1) Concepts in many-body physics
- 2) Second quantization
- 3) Interactions
- 4) Correlation functions
- 5) Feynman diagrams

Basic general

Principles of the Theory of Solids, Ziman (1979) *Solid State Physics*, Ashcroft & Mermin (1976) *Introduction to Solid State Physics*, Kittel (1996)

Advanced many-body theory

Quantum Theory of Solids, Kittel (1987) Quantum Field Theory in Condensed Matter Physics, Nagaosa (1999) Condensed Matter Field Theory, Altland & Simons (2010)