

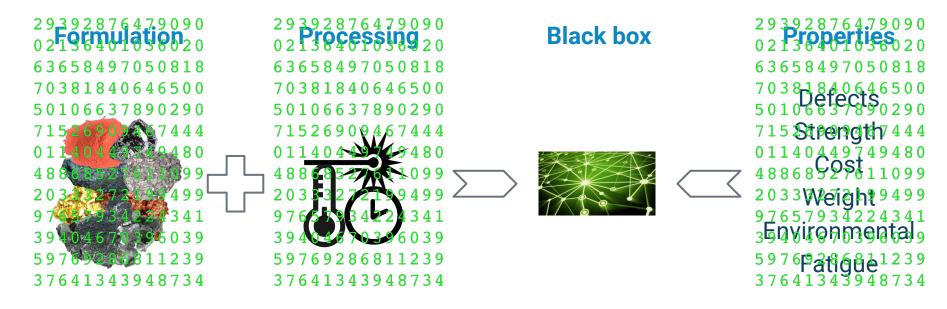
intellegens

The Sparse, Noisy Data Problem In Product Development, Manufacturing, and Beyond

Advanced Engineering 2021

Approach problems with a black box

Environmental


Fatigue

Formulation Processing Black box Properties

Defects
Strength
Cost
Weight

Training the machine learning

Using the machine learning

Formulation Processing Black box Properties

Defects
Strength
Cost
Weight
Environmental
Fatigue

Applied to alloys, composites, plastics, chemicals, batteries, drugs, and ceramics

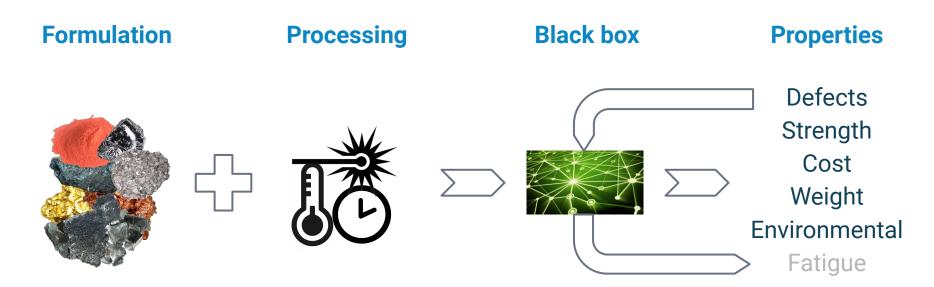
Data can be sparse

Formulation

Processing

Black box

Properties



Defects Strength Cost Weight **Environmental**

Fatigue

Impute sparse data

Alchemite™ technology offers a unique combination

Value from sparse, noisy data

Unique self-consistent, iterative algorithm imputes sparse data

Optimise against multiple targets

Solves high-dimensional problems that were intractable

Quantify uncertainty to enable rational decisions

Accurate method (nonparametric probability distributions)

Make a fast start

Auto-generates models, requiring minimal assumptions

 $\nabla \lambda$

 \mathbf{L}

Speed and scalability

Light CPU / memory footprint: fast and works for huge datasets

A global view

E.g., ingredients *and* processing parameters in a combined study

Alchemite™ technology offers a unique combination

Value from sparse, noisy data

Unique self-consistent, iterative algorithm imputes sparse data

Optimise against multiple targets

Solves high-dimensional problems that were intractable

Handle sparse, noisy, complex data

Quantify uncertainty to enable rational decisions

Accurate method (nonparametric probability distributions)

Make a fast start

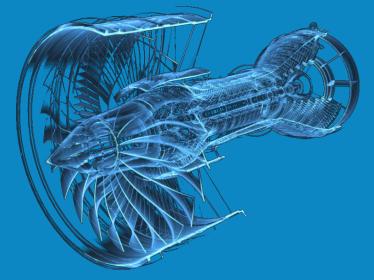
Auto-generates models, requiring minimal assumptions

K 7

L A

Speed and scalability

Light CPU / memory footprint: fast and works for huge datasets


solution

Ready-to-use

A global view

E.g., ingredients *and* processing parameters in a combined study

intellegens.ai/applications/materials/ Materials & Design **168**, 107644 (2019)

High temperature alloy

Design process for AM materials

Validated a new alloy for 20+ composition/process parameters to satisfy 11 physical criteria

90% fewer costly experiments

Reduced costs by \$10 million

Accelerated typical discovery and validation time from 20 to 2 years

Blend experimental and computational data to improve battery management software

Alchemite[™] design of experiments used **x10** fewer calculations

Predicting the State of Charge and Health of Batteries using Data-Driven Machine Learning

Nature Machine Intelligence 2, 161 (2020)

More examples of machine learning for manufacturing

Component design

Validate for heat exchanger and shape memory alloy applications

Ink reformulation

Cut key experimental timescales from months to minutes

Additive manufacturing

Optimize process parameters to deliver AM parts repeatably

Automotive catalysts

Speed-up experimentally-intensive processes

Hardfacing materials

Design surface treatments to reduce wear

Precision medicine

Personalise treatments based on patient data

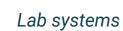
Sparse data, uncertainty & design of experiments

Alchemite[™] uses property-property correlations, uncertainty estimates, design of experiments, and broad access to overcome inevitable sparse data

Track record of designing experimentally verified materials with apparently impossibly small amounts of data, including processes for additive manufacturing

Double Winner at the ASME Additive Manufacturing Innovation Awards 2021

Alchemite[™] **product family**



Option to deploy models

Optional connectors

Software & scripts

Sharing & collaboration

Alchemite™ Analytics

Deep data insights on your desktop Guide experiments, predict, design, optimise

Alchemite™ Engine

Integrate into your workflow (API, Python)
Advanced configuration, enterprise deployment

Alchemite[™] Success Access Intellegens deep learning expertise

Advice to your data science team or full project management

Next steps

Contact gareth@intellegens.ai

Website https://intellegens.ai

Papers https://intellegens.ai/article-type/papers/

Demo https://app.intellegens.ai

@intellegensai

/company/intellegensai

