

intellegens

DATA - DRIVEN DISCOVERY

Deep learning for materials and additive manufacturing

Webinar - 23 February 2021

Today's speakers

Dr Gareth Conduit

Chief Technical Officer Intellegens

Ian Brooks

Technical Fellow AMRC North West

Today's agenda

Host	Stephen Warde
Introduction	Dr Gareth Conduit
Case study	Ian Brooks

Alchemite[™] demo Dr Gareth Conduit

Q&A Please use the "Questions" box on the control panel

A recording will be available soon at intellegens.ai/webinars

Introducing Intellegens

Unique **deep learning** software and expertise

Proven to generate value from 'real world' sparse and noisy data

Key focus: data-driven discovery and development

Materials and chemicals, life sciences, manufacturing Technology works for any numerical dataset

Technology originated in the Cavendish Laboratory, **University of Cambridge** Further development and innovation by the Intellegens team

Alchemite™

Machine learning for sparse and noisy data

intellegens

Gareth Conduit Chief Technical Officer Intellegens

Alchemite[™] solves three challenges on real-world data

f

Computation

Complex multi-parameter Setup requires knowledge

Experiment

Typical program costs \$millions and takes years

Focus on the routes most likely to succeed?

Machine learning

Data analysis

Training data is sparse & noisy, so conventional methods fail

Hard to combine disparate data sets

Materials, process, and product landscape

Materials, process, and product landscape

Experiment Characterise, experimental design, qualify, and certify Computation Materials modeling and process simulation Data analysis Statistical analysis, quality assurance, process control

Materials, process, and product landscape

Experiment Characterise, experimental design, qualify, and certify Computation Materials modeling and process simulation Data analysis Statistical analysis, quality assurance, process control

Machine learning maximizes return from valuable data and simulations, getting the material to market quicker and cheaper, and enables concurrent materials design

Many problems approached with a black box

Environmental

Training the machine learning

Black box

Using the machine learning

Formulation Processing Black box Properties Image: Strength Defects Image: Strength Defects Image: Strength Defects Image: Image: Strength Defects Image: Strength Defects Image: Strength Defects Image: Image: Strength Defects Image: Strength Defects Image: Strength Defects Image: Image: Strength Defects Image: Strength Defects Image: Strength Defects Image: Image: Strength Defects Image: Strength Defects Image: Strength Defects Image: Image: Strength Defects Image: Strength Defects Image: Strength Defects

Applied to alloys, composites, plastics, chemicals, batteries, drugs, and ceramics

Project MEDAL

Machine Learning for Additive Manufacturing Experimental Design

NATEP award

intellegens

Ian Brooks Technical Fellow AMRC North West

Machine Learning for AM Process Development

Ian Brooks

Confidential. Copyright © The University of Sheffield AMRC Sept-20. Template: AMRC.PPTW – Revision 4 (Sept 2020)

23.02.2022

Project MEDAL is a NATEP funded project between Intellegens and AMRC with steering input from Boeing. MEDAL aims to use machine learning to rapidly optimise Additive Manufacturing (AM) processing parameters for new metal alloys. One of the main drawbacks of AM is the limited material selection currently available. New materials, particularly in aerospace, require many expensive experiments and certification cycles.

2

Introduction

Problem Statement

Additive Manufacturing (AM) is a broad term for many different technologies. Specific differences centre around the type of feedstock and the heat source.

There is one characteristic of all AM processes that differ from that of conventional manufacturing techniques. They all manufacture the material concurrently with the geometry as opposed conventional whereby the geometry is created from a known material. This brings about a number of problems:

- AM material is 'different'
- It requires a unique set of process parameters for each feedstock
- Qualification, particularly for metal AM target applications, has to consider new materials and processes
- Feedstock in its raw form must be qualified
- There are interdependent relationships between the geometry and the process parameters

Problem Statement

It requires a unique set of process parameters for each feedstock

There are interdependent relationships between the geometry and the process parameters

What is Process Development....and what are the problems?

- Optimising the process variables to satisfy end use requirements
- Noise variables
- Many variables / dimensionality
- Interacting variables
- Process is 'complex'
- Response variables are varied and onerous to establish
- Machine/s 'idiosyncrasies'
- Knowledge resides in a close circle
- Varied experimental methodology

LPBF Process Development - Experimentation

OFAT •

	Study	DOE Design	No. Factors	No. Levels	No. Runs
	[29]	Full Factorial	2	4/12	48
	[31]	Full Factorial	3	3	48
	[32]	Full Factorial	3	5/4/2	40
Ε	[36]	Taguchi Orthogonal Array	5	5	25
	[37]	Plackett-Burnam	23	3	36
	[41]	Full Factorial	5	Unclear	Unclear
	[42]	Taguchi Orthogonal Array	5	5	25
	[43]	Full Factorial	3	3	27
	[44]	RSM Central Composite	3	5	17

Do •

Alchemite Vs DoE for LPBF Process Development

7

LPBF Process Development – ML Vs DoE

DoE Limitations	Potential Alchemite Solutions
Dimensionality	ML can seamlessly build high quality, accurate models for high dimensional systems
Sample 'failures' either in build or measurement stages	Identify erroneous data and impute missing data
Measurement system capability	Merges and aggregates sparse and noisy data
Knowledge	Standardised workflow / process, insights into underlying science
Expensive experimentation	Reduce no. of experiments
Experimentation 'Time'	Select between low n + high resolution and high n + low resolution

8

Project MEDAL – Progress so far

5 factor weighted quadratic function

9

The University / AMRC

Project MEDAL – Next Steps

• Generate AM specific data

• Create AM centric s/w work flow

Thank you. For further information please contact or visit:

Email: i.brooks@amrc.co.uk

Tel: 0114 222 1747

Web: amrc.co.uk

Confidential. Copyright © The University of Sheffield AMRC Sept-20. Template: AMRC.PPTW – Revision 4 (Sept 2020)

High temperature alloy

90% reduction in expensive experiments

Reduced costs by \$10 million

Accelerated discovery and validation from 20 to 2 years

intellegens.ai/applications/materials/

Materials & Design 168, 107644 (2019)

Hardfacing consumables

Fulfilled environmental target to remove Cr

Cut alloying elements by 50%

intellegens.ai/applications/materials/

Software demonstration

Alchemite[™] Analytics **intuitive** user interface

- Perform virtual experiments
- Design your next experiment

Optimise a new alloy and processes to achieve multiple target properties

Intellegens products

Alchemite[™] Analytics

Deep learning insights on the desktop

For engineers and scientists

Alchemite[™] Engine

Integrate into your workflow (API, Python)

For data scientists

Alchemite[™] Success Apply Intellegens deep learning expertise to meet your objectives Advice to your data science team or full project management

Characterise and design alloys and additive manufacturing

Accelerate development to reduce **time to market**

Focus experiment and testing to **make best use of resources**

Project MEDAL with AMRC and Boeing

Recent news

Ansys / GRANTA

Intellegens and Ansys to empower Additive Manufacturing with material intelligence through machine learning

The agreement will embed Intellegens' machine learning technology, Alchemite™, within the Ansys materials data management platform, Granta MI™.

More at intellegens.ai

Question & answer session and contact details

Please use the "Questions" box on the control panel

Email info@intellegens.ai

Newsletter intellegens.ai/subscribe

Website intellegens.ai

Twitter @intellegensai