

Climbing the greasy pole with machine learning: designing lubricants

Pavao Santak & Gareth Conduit

Theory of Condensed Matter group

Purpose of lubricants

Reduce friction between surfaces Protect them from wear **Transfer heat** Remove dirt **Prevent surface** corrosion

Other requirements for lubricants

Stable
Not spontaneously combust
Liquid
Affordable
Ease of manufacture

- Train from **Sparse** datasets
- Merge simulations, physical laws, and experimental data
- Reduce the need for expensive experimental development
- Accelerate discovery
- Generic with proven applications in materials discovery and drug design

Typical lubricant hydrocarbon

Scope of lubricant study

Comprise up to thirty carbon atoms

Consider up to two branches

All **single** bonds, no additional elements

First component of basis set

Total number of C atoms

Second component of basis set

Total number of C atoms

Distance of first branch from end

Basis set should be continuous

Total number of C atoms

Distance of first branch from end

Zero equivalent to no branch

Total number of C atoms

Distance of first branch from end

Two equivalent to center

Total number of C atoms

Distance of first branch from end

Third component of basis set

Total number of C atoms

Distance of first branch from end

Length of first branch

Fourth component of basis set

Total number of C atoms

Distance of first branch from end

Length of first branch

Distance of second branch from end

Fifth component of basis set

Total number of C atoms Distance of first branch from end Length of first branch Distance of second

branch from end

Length of second

branch

Full basis set

Total number of C atoms

Distance of first branch from end

Length of first branch

Distance of second branch from end

Length of second branch

(9,1,1,3,2)

Target properties

Neural network for lubricant design

Train the neural network

Predict using the neural network

All data available for training

Split into training and hold out validation set

Split into training and hold out validation set

Two alternate fits to the data

Penalize overfitted curve

Crossover validation: second hold out set

Crossover validation: third hold out set

293928764790904 021364010360202 63658497050818: (\Box) 70381840646500 a 50106637890290 0 71526909467444 01140449749480 Q d 48868527611099. ate 20333272199499! 976579342243418 39404670396039 59769286811239: 37641343948734 36652447277378 14421981032661(80555606952664: 983443994881092

Flash point

Neural network $R^2=0.997$ Group contribution $R^2=0.971$

Boiling point

Kinematic viscosity

Neural network $R^2=0.998$ Free volume theory $R^2=0.899$

Summary of machine learning accuracies

Property	Machine learning	Alternate
Density	0.987	0.890
Heat capacity	0.996	0.995
Vapor pressure	0.962	-
Flash point	0.997	0.971
Melting point	0.998	0.991
Boiling point	0.992	0.977
Kinematic viscosity	0.998	0.899

Non-equilibrium molecular dynamics

Periodic moving boundary conditions

Increasing uncertainty on approaching zero shear rate

Carreau model guides extrapolation to zero shear rate

Extrapolating with a straight line to $x \rightarrow 0$

Use calculations far apart

Use calculations near together

Intermediate spacing of calculations

Optimize position of calculations

Setting up optimization problem

 $\chi^2 = (y_0 + mx_1 - y_1)^2 / \sigma_1^2 + (y_0 + mx_2 - y_2)^2 / \sigma_2^2$

Fit the straight line

 $\chi^2 = (y_0 + mx_1 - y_1)^2 / \sigma_1^2 + (y_0 + mx_2 - y_2)^2 / \sigma_2^2$

Solve $d\chi^2/dy_0=0$ and $d\chi^2/dm=0$ to deliver y_0 , m, and uncertainty in y_0

Solving optimization problem

 $\chi^2 = (y_0 + mx_1 - y_1)^2 / \sigma_1^2 + (y_0 + mx_2 - y_2)^2 / \sigma_2^2$

Solve $d\chi^2/dy_0=0$ and $d\chi^2/dm=0$ to deliver y_0 , m, and uncertainty in y_0

Minimize uncertainty in y_0 with respect to x_1 , T_1 , and T_2 with constraint $T=T_1+T_2$

Optimal strategy

Developed for Diffusion Monte Carlo in R.M. Lee, G.J. Conduit, N. Nemec, P. López Ríos & N.D. Drummond Phys. Rev. E 83, 066706 (2011)

Viscosity of hexadecane at 60°C

Viscosity of straight chain alkanes

Hydrocarbon	20°C	40°C	60°C	70°C	100°C
Hexane	0.52 (0.56)	0.37 (0.37)	0.33 (0.34)	-	-
Decane	1.23 (1.27)	1.01 (1.00)	0.83	0.61	0.52
Tetradecane	2.93 (3.06)	2.04	1.51	1.27	1.02
Hexadecane	4.49 (4.51)	2.94 (2.92)	2.19 (2.06)	-	1.45 (1.41)

Comparison to other approaches

Hydrocarbon	20°C	40°C	60°C	70°C	100°C
Hexane	0.52 (0.56)	0.37 (0.37)	0.33 (0.34)	-	-
Decane	1.23 (1.27)	1.01 (1.00)	0.83	0.61	0.52
Tetradecane	2.93 (3.06)	2.04	1.51	1.27	1.02
Hexadecane	4.49 (4.51)	2.94 (2.92)	2.19 (2.06)	-	1.45 (1.41)

Our molecular dynamics	<i>R</i> ² =0.95
Other molecular dynamics	<i>R</i> ² =0.69

Model many physically relevant properties of lubricants with machine learning

Optimal strategy for non-equilibrium molecular dynamics simulations of ViSCOSity

P. Santak & G.J. Conduit Fluid Phase Equilibria 501, 112259 (2019)