

Towards net zero with machine learning: battery and materials development

Dr Gareth Conduit

Introducing Intellegens

Unique deep learning software and expertise

• Get value from **sparse**, **noisy data** to solve complex **high-dimensional** problems

Easily deploy models to deliver immediate ROI

• Integrate with existing systems and/or applied through a web based platform

Can be applied to any numerical dataset

• Key focus areas: materials, chemicals, manufacturing, batteries, drug discovery

Two ways machine learning could help to achieve net zero

Machine learning materials and formulations

With machine learning you could... Management Materials and formulation software Cell & pack design н

But it's not so easy in real-word R&D!

Challenge 1: Working with real-world data

Challenge 2: Making ML work in practice

Data scientists

Sparse data problems require timeconsuming workarounds

You build valuable models but colleagues don't use them

Scientists, engineers, analysts...

Too much setup/training required Fails for your (sparse) data Difficult to interpret the results

The Alchemite[™] solution

Introducing Alchemite[™]

Unique, proprietary algorithm from the University of Cambridge

Deep, iterative **imputation** method

Novel implementation of a neural network, where all inputs are also outputs

Quantifies **uncertainty** through advanced, non-parametric probability distributions

Design optimal materials

Figure 2 from Computational Materials Science **147**, 176 (2018)

'Explainable AI' with an easy-to-use interface

f intellegens		Download dataset		aset	Download predictions	B Download outliers				 Show info panel
	CHEMITE [™] ANALYTICS	OPTIO	OPTIONS							
All Models			Show predictions Show outliers Ο 1 σ							
	Steels ~	NI	D10	D 50	Laser Power (W)	Hatch Scan Speed (m/s)	Hatch Distance (mm)	Tensile Strength (MPa)	Elongation (%)	Density (g/cm*3)
	el Pages	3.670	15.60	46.86	310.0	1.400	0.1200	1179	37.70	7.909 ±0.027
	Dashboard	3.460	16.99	49.56	200.0	1.400	0.08000	1083 ±30	40.64	7.883
		3.150	15.92	48.72	370.0	1.400	0.1000	1240	33.23	7.930
	Data explorer >	2.460	16.04	48.01	290.0	0.7000	0.09000	1295	23.72	7.878
ılı	Analytics	3.680	15.22	47.37	430.0	0.5000	0.1000	1451	14.70	7.887
	Test Model	3.970	15.70	47.16	390.0	1.900	0.1000	1171 ±28	35.86	7.922
	Predict	3.670	15.54	46.45	470.0	1.900	0.09000	1261	28.31	7.865 ±0.015
•	Optimize	3.150	16.88	49.90	420.0	1.900	0.1100	1209	35.32	7.897
A	My Formulations	3.670	15.76	48.63	230.0	1.400	0.07000	1085	41.83	7.877
Ξ.		3.680	15.39	49.01	330.0	1.400	0.09000	1179	40.16	7.871
~	Improve Model	3.680	16.43	48.39	410.0	1.400	0.07000	1257	29.16 ±2.25	7.876
₽.	Add Data	2.460	15.19	47.25	230.0	1.800	0.1200	1046	40.05	7.850
		2.860	15.50	48.19	450.0	1.400	0.1000	1309 ±17	24.98	7.896
		3.670	15.54	47.01	490.0	1.500	0.1000	1359	19.94	7.937
		4.030	15.70	49.39	210.0	1.400	0.1100	1077	45.95	7.866
		3.150	15.27	45.40	440.0	1.400	0.1100	1306	27.75	7.932
		2.860	15.08	46.50	290.0	0.7000	0.1100	1296	31.78	7.925 ±0.029

Case studies

Confidential

intellegens.com

Electrode materials

New electrode designed using Alchemite[™] (▲) to deliver high discharge specific capacity (D30) and high active mass

Experimentally verified () to outperform existing cells ()

Cell Reports Physical Science **2**, 100683 (2021)

Management software

Nature Machine Intelligence 2 161-170 (2020)

Predict the State of Charge / Health & Remaining Useful Life using ML

Result: accurate predictions for EV batteries at low computational cost

Heat exchanger & shape memory alloy applications

Fluid Phase Equilibria **501**, 112259 (2019)

Journal of Chemical Physics **153**, 014102 (2020)

Applied machine learning for energy storage

Solve materials and formulation challenges with fewer experiments, saving time & cost

Optimise battery cells and packs, reducing the number of tests and prototypes

Understand and predict key battery metrics for improved performance

Next steps

- Contact gareth@intellegens.ai
- Website https://intellegens.ai
- Papers https://intellegens.ai/article-type/papers/
- Demo https://app.intellegens.ai

@intellegensai

/company/intellegensai

