

Machine learning to predict mesenchymal stem cell

efficacy for cartilage repair

Yu Yang Fredrik Liu¹, Yin Lu², Gareth J. Conduit¹, Steve Oh² (steve_oh@bti.a-star.edu.sg) (¹CU, ²BTI)

Background

- Cartilage damage affects millions of people worldwide
- Mesenchymal stem cell (MSC) therapy is promising, but still inconsistent in efficacy
- Lack of guidelines to strategize MSC therapy for optimal therapeutic efficacy

Neural network formalism

Cross-validation using the coefficient of determination (R²) Selection of 7 input properties to formulate the model based on R² Two unique features

Dataset establishment

- Input properties: Cell and treatment related factors (e.g. cell source, cell number, defect size)
- Output properties: therapeutic outcomes (e.g. repair scores)

Handling incomplete data

Iterative filling of incomplete data entry by considering the underlying correlations across different properties maximizes the usage of entire database

Computing prediction uncertainty

Enabling precise prediction based on small database by focusing on predictions with low uncertainties

Results: machine-learned quantitative guidelines for MSC therapy

• High impact factors for MSC therapy efficacy

 Implantation of 17 – 25 million MSCs is predicted to result in optimal cartilage repair

 Critical cartilage damage thresholds which impair MSC therapy efficacy are predicted:

