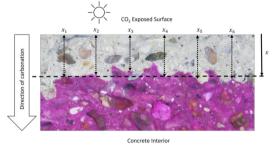
Understanding the unexpected: exposing information hidden in noise

Bogdan Zviazhynski, Jessica Forsdyke, Janet Lees & Gareth Conduit

We present a machine learning architecture that computes uncertainty in one target variable to extrapolate a second target variable. We use the architecture to propose two concrete mixes.

The methodology is shown below with the machine learning models depicted by the brain.

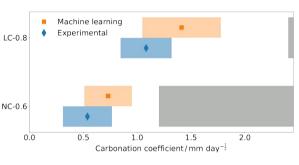


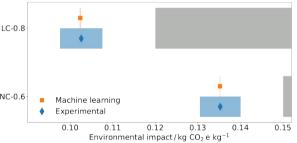
Results

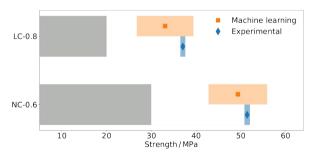
We propose two concrete mixes, for one we seek low carbonation, and the other low environmental impact.

	Ingredients	LC 0.8	NC 0.6	
	Cement [%]	10.5	14.2	
	Gravel [%]	48.4	48.9	
C.	Sand [%]	32.6	28.4	
	Water [%]	8.5	8.5	

Machine learning can exploit uncertainty in carbonation NC-0.6 depth to aid the prediction of physical properties


Future opportunities


My group at University of Cambridge are seek R&D academic collaborators.


Alchemite™ machine learning for handling sparse and noisy data commercialized by Intellegens, https://intellegens.com/.

The generic methodology can be applied to a broad range of areas:

Experimental validation

Applied machine learning

Biomolecules

Autonomous cars

Predicts molecules formed

Uncertainty in light absorption Uncertainty in object distance Predicts object type

Concrete

Uncertainty in microstructure Predicts tensile strength

