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Abstract

Development of robust concrete mixes with a lower environmental impact is challenging due to natural variability in
constituent materials and a multitude of possible combinations of mix proportions. Making reliable property
predictions with machine learning can facilitate performance-based specification of concrete, reducing material
inefficiencies and improving the sustainability of concrete construction. In this work, we develop a machine learning
algorithm that can utilize intermediate target variables and their associated noise to predict the final target variable.We
apply themethodology to specify a concrete mix that has high resistance to carbonation, and another concretemix that
has low environmental impact. Both mixes also fulfill targets on the strength, density, and cost. The specified mixes
are experimentally validated against their predictions. Our generic methodology enables the exploitation of noise in
machine learning, which has a broad range of applications in structural engineering and beyond.

Impact Statement

This article demonstrates that machine learning can be used to predict the properties of concrete even with a
sparse and noisy dataset. This has important applications to performance-based specification of concrete mixes
—enabling appropriately durable and strong concretes to be specified while minimizing embodied carbon or
cost. In cases where time-consuming and costly trials are required, this is particularly beneficial. The machine
learning methodology developed and demonstrated in this article has application to the broader field of
accelerated materials design, allowing bespoke materials to be designed rapidly for each particular application.
Furthermore, there are many examples of other verticals where information is embedded in noise, including
autonomous vehicles, additive manufacturing, and information engineering, where machine learning offers the
opportunity to accelerate development, understanding, and impact.

1. Introduction

Concrete is the most heavily used construction material in the world. The only substance consumed in
greater quantities is water (Sedgwick, 1991). Concrete is ideal for construction because it is readily
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adaptable—material properties including density, strength, durability, and appearance can bemanipulated
by adjusting the proportions and materials in the mix design.

Conventional concrete mixes comprise three primary constituents: cement, water, and aggregate.
Cement acts as the binder in concrete and is both economically and environmentally costly (Wassermann
et al., 2009). Production of cement is responsible for an estimated 5–6% of global CO2 emissions (United
Nations Framework Convention on Climate Change (UNFCCC), 2018), owing to both process emissions
and energy demands (Allwood and Cullen, 2012). Therefore, the bulk of concrete is comprised of
aggregates, which can be classified as either “fine” (sand), or “coarse” (gravel and rock). Once concrete is
mixed and placed in a mold, compounds in the cement undergo hydration reactions with water (Neville,
2011), forming a complex microstructure of pores, hydrated cement paste, and aggregates. This gives the
concrete its “hardened state” properties including resistance to both applied loads (strength, stiffness), and
aggressive substances (durability).

In this era of increasing environmental CO2 concentrations, the interaction of CO2 with the built
environment is of increasing interest (Talukdar and Banthia, 2016; Jiang et al., 2018). In particular, there
exists a chemical reaction of carbon dioxide (CO2) with hydration products in concrete (Papadakis et al.,
1989), which is referred to as concrete carbonation. The CO2 diffuses into the concrete from the
surrounding environment. The resulting carbonated material has a changed microstructure compared
to noncarbonated concrete (Groves et al., 1991; Greve-dierfeld et al., 2020), and a lower alkalinity of the
pore water (Papadakis et al., 1989). Therefore, this carbonation can lead to structural damage since this
loss of alkalinity facilitates corrosion of the internal steel reinforcement which is required to carry tensile
loads in concrete structures (Page, 2007). Ultimately, carbonation is one of the primary deterioration
mechanisms of steel-reinforced concrete structures, making it a significant area of concern.

Specification of the most appropriate concrete for a particular application can be carried out using a
performance-based or prescriptive approach. Where a performance-based concrete specification process
is implemented, targets are placed on concrete output properties, such as strength or carbonation
coefficient. This is opposed to a prescriptive concrete specification approach, which limits the input
parameters such as cement content or water/cement ratio (the principle applied by Eurocode BS EN
206:2013þA1 (British Standards Institution, 2016). At present, concrete mix design methods (Abrams,
1918; ACI Committee 211, 1991; Teychenné et al., 1997; Wilson and Kosmatka, 2011) use empirically
derived relationships betweenmix ratios and concrete properties, in particular the strength of the concrete,
to proportion mixes. In any large-scale concrete application following a performance-based approach, a
variety of mixes are designed using one of these methods and then trial mixes are cast to verify that the
final properties of a particular mix are acceptable. Performance-based specification can, therefore, lead to
more efficient, optimal mixes being selected (Wally et al., 2022). However, the trial-and-error process can
be both time-consuming and costly.

Machine learning offers an opportunity to capture complex multi-dimensional relationships between
the inputs (mix proportions) and outputs (material properties), and to reduce the need for a trial-and-error
approach in concrete design. Machine learning uses historical data to train a model, which later can be
used to predict quantities of interest. This approach has been used to predict properties of many different
materials (Bhadeshia et al., 1995; Sourmail et al., 2002; Agrawal et al., 2014; Ward et al., 2016; Ward
et al., 2017; Kim et al., 2018), including concrete (Taffese et al., 2015; BenChaabene et al., 2020; Prayogo
et al., 2020; Liu et al., 2021; Tran et al., 2022), proving its capability and versatility. Here we turn to
machine learning to design concrete.

Machine learning methods can also utilize the uncertainty in predictions of target variables to focus on
the most robust predictions. For example, the use of uncertainty has been extensively demonstrated and
experimentally verified for design of materials most likely to fulfill target criteria (Conduit et al., 2017,
2018, 2019). Furthermore, values of uncertainty itself can be useful for predicting the quantity of interest
(Goujon, 2009; Zerva et al., 2017; Zhang, 2020; Zviazhynski and Conduit, 2022). In concrete, the
appearance of randomly distributed aggregates of different shapes and sizes may be considered similar to
white noise, leading to variability and uncertainty in properties such as carbonation depth and compres-
sive strength. Information can be extracted from uncertainty in some of the measured properties, and used
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to predict other properties to allow better insights and, ultimately, better mix design. In this work, we
develop a methodology capable of extracting information from uncertainty. We use the methodology to
select concrete mixes that have specific desired properties for sustainability and durability targets,
providing a template for future machine learning applications to systems where there is information
hidden in the noise.

In this article, we first explore the relationships between measured properties of concrete mixes
prepared in a laboratory study in Section 2. We then describe the machine learning methodology capable
of extracting information out of noise to help predict properties of concrete in Section 3.We next describe
the application of this methodology to concrete specification in Section 4 and validate our proposal on
experimental results in Section 5. Finally, we discuss the future applications of the methodology to
concrete-related areas and beyond in Section 6.

2. Relationships Between Concrete Properties

To build our machine learning model on a solid foundation we first explore the relationships between
various concrete properties using empirically collected data from 21 laboratory concretes, including two
mixes reported in Forsdyke and Lees (2021b). The dataset (provided in the Supplementary Material)
contains information about the proportions of constituent materials (cement, gravel, sand, and water) in
each batch, as well as properties of interest (carbonation coefficient, environmental impact, strength,
density, and cost) for the resulting concrete. In all concretes in this publication, the gravel used is crushed
limestone with the maximum particle size of 10 mm, and the sharp sand used has a maximum particle size
of 4 mm (with 80% of sand particles smaller than 1 mm).

The mixes were originally proportioned using the BREmethod (Teychenné et al., 1997), which uses
an estimated mass per cubic meter, also given. As a measure of concrete durability, 16 of the
21 concretes were exposed to a 4% CO2 environment. The carbonation depth was measured over time
from a minimum of three samples of each mix to produce a carbonation profile from which carbonation
coefficient, K, was calculated. A low carbonation coefficient represents high resistance to carbonation.
Another variable, preconditioning time, refers to the period between water curing and elevated CO2

exposure for those specimens where carbonation performance was measured. An estimate of environ-
mental impact in the form of kg embodied CO2 per kg of concrete (kgeCO2/kg) was also provided, as
well as: compressive cube strength of the concrete; water saturated density measured in air; and
estimated cost per kg (£/kg).

The correlations between the properties from the concrete dataset, measured with the Pearson
correlation coefficient, are shown in Figure 1. The first nine rows represent input properties such as
mix proportions and estimated mass per cubic meter assumed before the concrete has been cast. The
final five rows represent measured properties of the resultant concrete. Correlations of particular
interest are highlighted by the boxes (a–k) in Figure 1. Overall, Figure 1 shows that there are
correlations between many of the variables in the concrete dataset, which can be exploited to fit a
machine learning model to the data and make predictions. We now discuss notable correlations for each
individual property.

2.1. Carbonation coefficient

A strong negative correlation between carbonation coefficient and cement content is observed at (a) in
Figure 1. This is because higher proportions of cement provide higher volumes of carbonatablematerial in
the concrete matrix once hydrated (Papadakis et al., 1991), increasing the time for carbonation to reach a
particular depth. Strong positive correlations are observed between carbonation coefficient and crushed
gravel content, (b), and between carbonation coefficient and total aggregate/cement ratio, (c). This is also
logical when considering a fixed volume of hydrated cement paste will penetrate deeper into a concrete
when more aggregates are suspended in it.
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2.2. Environmental impact

It is well established that cement is the component of concrete responsible for the majority of its
environmental impact. Whereas, the relative embodied carbon of the aggregates, acting as inert filler
materials (Neville, 2011), are low. This is confirmed in Figure 1 by the strong positive correlation between
environmental impact and cement content, (d), and the strong negative correlation between environmental
impact and total aggregate/cement ratio, (e). With such strong correlations, we expect machine learning
predictions for environmental impact to be more accurate than for other target variables, which have
weaker correlations with composition variables.

Environmental impact in this study is calculated assuming constant embodied emissions for each
constituent component. Therefore, environmental impact is a linear function of concrete mix proportions.
Generally, however, embodied emissions of each component depend on the manufacturing process,
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Figure 1. Correlation map for concrete properties in the training dataset. Light colors correspond to
strong positive correlations, dark colors correspond to strong negative correlations, and intermediate
colors correspond to weak correlations, as per the color scale shown. Green boxes highlight notable
correlations. Properties written in dark pink are intermediate quantities derived from concrete mix

proportions and properties written in light pink are target variables.
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transport to the site, and solid waste generation (Babor et al., 2009; Sousa and Bogas, 2021). The effect of
the manufacturing process, transportation, and solid waste generation on environmental impact cannot be
evaluated analytically and so this study represents a template of how machine learning could be used to
predict environmental impact.

2.3. Compressive strength

Figure 1 also demonstrates negative correlations between compressive strength and water/cement ratio,
(f), and between compressive strength and total aggregate/cement ratio, (g). Concrete strength is widely
considered to be a function of pore structure (Powers, 1958; Pantazopoulou and Mills, 1995; Chen et al.,
2013). Above the minimum required for full cement hydration (Powers, 1958; Aïtcin, 2016), increasing
the water/cement ratio leads to loss of concrete strength due to microscopic pores formed by water
molecules that are not chemically bound in hydration products (Pann et al., 2004). Increasing the total
aggregate/cement ratio similarly decreases strength due to loss of bond between the cement matrix and
aggregates (Poon and Lam, 2008) and may change the degree of compaction (Marar and Eren, 2011) that
leads to lower strength (Mindess et al., 2003). A strong negative correlation between strength and
carbonation coefficient is also observed (h), supporting the validity of models that use strength to predict
carbonation behavior (Silva et al., 2014; Forsdyke and Lees, 2021a).

2.4. Density

Density does not appear to have any strong correlation to the input parameters, whichwe envisage tomake
the application of machine learning to predict density more difficult than the other target variables. The
strongest relationship observed is a negative correlation to the absolute volume of coarse aggregate,
crushed gravel, (i). Density of concrete in the hardened state is influenced by the particle-size distribution
having allowed effective compaction in the wet state (Sims et al., 2019). Total aggregate content varies
minimally between the mixes in this study. Therefore, higher quantities of coarse aggregate correspond to
lower quantities of fine aggregate within the data set (as seen by the strong negative correlation between
sharp sand and crushed gravel). It is possible that this leads to less optimal particle packing, which in turn
leads to the lower density observed here for mixes with higher coarse aggregate volumes. Other
information not captured here, such as the particle size distribution and smoothness of the aggregates,
may also influence density, leading to noise in this data.

2.5. Cost

A strong positive correlation is observed between cost and cement content, (j), whereas a strong negative
correlation is observed between cost and total aggregate/cement ratio, (k). This is expected, since cement
is the most expensive component of concrete, whereas aggregates act as a filler material and are much
cheaper components of concrete. Like for environmental impact, we expect machine learning predictions
for cost to be more accurate than for other target variables.

Cost in this study is calculated assuming fixed price for each constituent component. Therefore, cost,
like environmental impact, is a linear function of concrete mix proportions. Generally, however, the price
of each component depends on regulation, inflation, and supply (Velumani and Nampoothiri, 2018; Ma
et al., 2022). The effect of these factors on cost cannot be evaluated analytically and so this study serves as
a foundation showing how machine learning could be used to predict cost.

3. Machine Learning Methodology

Machine learning algorithms are trained on preexisting data tomake predictions. In this case, the predicted
quantities are the properties of concrete mixes. A few examples of widely used machine learning
algorithms are k-means clustering (Hastie et al., 2001), neural networks (Heskes, 1997), and Gaussian
processes (Tancret, 2013). In this article, we use the random forest algorithm (Pedregosa et al., 2011), as it
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is computationally cheap and robust for finding nonlinear relationships. We compare a single-layer linear
model with a single-layer random forest model and our two-layer random forest model that can extract
information from the noise present in concrete data. Figure 2 shows the flow of information through these
three model types.

3.1. Single-layer linear model

The most basic method for property prediction is to fit a hyperplane to the training data. The hyperplane
uses the input values (e.g., concrete mix proportions) to directly predict the final target variable (e.g.,
strength). Figure 1 showed the strength of linear correlations between input and output properties,
motivating this approach. This method, which we call a single-layer linear model, is illustrated by Flows
A1 and A2 in Figure 2a.

The method is simple and robust; however, it does not capture the nonlinear relationships between
concrete properties. If the final target variable has a nonlinear dependence on the inputs, the linear model
predictions will not be accurate. Therefore, we also consider a model that captures nonlinearities in the
data, which is a single-layer random forest model.

3.2. Single-layer random forest model

The random forest model is a collection of independent identical regression trees (Loh, 2011). During the
training phase, each regression tree learns how to map the input variables to the target variables. The
random forest algorithm computes the prediction and its uncertainty by bootstrapping (Hastie et al.,
2001). When bootstrapping a dataset with N entries, new subsets are generated by sampling N entries
randomly, with replacement. Each subset is then used to train one regression tree in the random forest. The
compound predictions are averaged to give the random forest prediction, and their standard deviation is
the uncertainty in prediction.

The depth of regression trees in a random forest, and, therefore, accuracy of the predictions, is
determined by the hyperparameters of the random forest. To achieve the best possible predictions for
blind data we tune these hyperparameters, assessing the accuracy of predictions using leave-one-out

Figure 2. (a) Flowchart for the single-layer linear model. (b) Flowchart for the single-layer random
forest model. (c) Flowchart for the two-layer random forest model.
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cross-validation (Hastie et al., 2001) on the training data. For predictions of each property, we use the same
hyperparameters to mitigate overfitting. The random forest algorithm can learn and exploit correlations
between various target variables and their uncertainties to make more accurate predictions of the final
target variable of interest.

A single-layer random forest approach follows Flows B1 and B2 in Figure 2b to use only the input
features (concrete mix proportions) to predict the final target variables (e.g. strength).

3.3. Two-layer random forest model

Alternative to the conventional single-layer approach, the flow of information through the two-layer
random forest model is demonstrated in Figure 2c. In the two-layer method, we train the first random
forest model on the concrete mix proportions (Flow C1) to predict all of the intermediate and output
variables such as carbonation coefficient, alongside its uncertainty (Flow C2), following the approach
described in Zviazhynski and Conduit (2022).We then train the second layer random forest model, taking
the concrete mix proportions (Flow C3) and other recently predicted variables including values for
uncertainty (Flow C4) to predict the outputs, for example, strength (Flow C5).

Using an intermediate variable and its uncertainty as an input for the second layer random forest model
is particularly useful if the intermediate variable is cheaper to measure than the target variable. For
example, strength is both more economical to measure and more commonly measured in concrete than
carbonation coefficient. Therefore, strength can be used as an intermediate variable in the two-layer
random forest model to predict carbonation coefficient, without the need for time-consuming carbonation
experiments. On the other hand, to assess the condition of an existing structure, taking a large core from
the structure to measure compressive strength can be particularly destructive. Instead, an intermediate
quantity, such as carbonation depth, can be measured from smaller, less invasive samples, to estimate the
strength with less damage to the structure. The strategy of using the expected value of an intermediate
variable to help predict the final variable has previously been successfully applied to materials and drugs
design to exploit relationships between various properties (Verpoort et al., 2019; Irwin et al., 2020a;
Mahmoud et al., 2021), but we now use uncertainty in the intermediate variable.

The uncertainty in the intermediate variable that machine learning should capture arises from the
inevitable scatter in training data due to experimental uncertainty. There are two methods to quantify the
uncertainty in the intermediate variable. The first method is to calculate the standard deviation of
predictions of regression trees in the random forest, and this quantity is used in the two-layer random
forest model. The secondmethod is to calculate the standard deviation of the experimental measurements.
In both cases, the uncertainty in a given variable has the same unit as this variable.

To demonstrate the utilization of uncertainty in the two-layer random forest model, we consider an
example shown in Figure 3. Here, for a given value of cement content X, the first layer random forest
model predicts the corresponding value of carbonation coefficient Y and its uncertainty σY, as shown in the
leftmost plot in Figure 3. Then the second layer random forest model utilizes uncertainty in carbonation
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coefficient to predict the corresponding value of compressive strength, Z, as shown in the middle plot in
Figure 3. Compressive strength is a decreasing function of uncertainty in carbonation coefficient
(Spearman correlation of�0:79), which enables the two models to work together to predict compressive
strength for a given cement content, as shown in the rightmost plot in Figure 3.

3.4. Training and testing the model

First, the hyperparameters of the three alternative models were tuned using leave-one-out cross-
validation. In this method, for each entry in the existing data on concrete mixes, the prediction of the
concrete property (e.g., strength) is made by the model trained on the rest of the existing data (Figure 4a).
Then these predictions are compared against the true values to obtain the leave-one-out cross-validation
R2, coefficient of determination (ranges from 1 for perfect predictions to �∞ for arbitrarily inaccurate
predictions), which is to be maximized. The leave-one-out cross-validation R2 values for each property
after hyperparameter tuning of each model can be seen in the table in Figure 4b.

The single-layer linear model gives good predictions for environmental impact, compressive strength,
and cost, since these are approximately linear functions. However, linear model predictions of carbon-
ation coefficient and density are inaccurate. The single-layer random forest model improves on those
predictions at the expense of environmental impact, strength, and cost prediction accuracy. As expected
from the data analysis in Section 2, the highest values of cross-validation R2 are achieved for environ-
mental impact and cost by all three models and the lowest values are generally achieved for density. The
two-layer model, capable of exploiting correlations between target variables and uncertainties in them,
therefore outperforms the single-layer linear model and single-layer random forest model. This demon-
strates the necessity of data-drivenmachine learning for property predictions and viability of the approach
even when the dataset only contains 21 samples. The hyperparameters of single-layer linear model,
single-layer random forest model, and two-layer random forest model can be found in the Supplementary
Material.

Figure 4. (a) Schematic of leave-one-out cross-validation. Blue squares are entries in the existing data
and magenta squares are the test entries for each fold. (b) Table of leave-one-out cross-validation R2

values for property predictions. Numbers in bold are the best R2 values for a given property.
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To evaluate the effect of intermediate variables, we furthermore test a single-layer random forest model
that has access to values of the intermediate variables taken from the experimental data to predict the target
variable. This model is known as imputation model and has been successfully used in materials and drug
discovery (Verpoort et al., 2019; Whitehead et al., 2019; Irwin et al., 2020a, 2020b; Mahmoud et al.,
2021). Imputation models exploit correlations between the intermediate variables and the target variable
and therefore achieve higher cross-validation R2 than both a single-layer linear model and a single-layer
random forest model. The imputation model does not need to predict intermediate variables so does not
propagate the error in them, which leads to better cross-validation R2 than the two-layer random forest
model. However, the imputation model requires measured concrete properties as inputs, so is unsuitable
for designing and predicting properties of a novel concrete mix. Therefore, for the remainder of this study,
we adopt the two-layer random forest model.

The two-layer random forest model has access to cement type, concrete mix proportions, ratios of
concrete mix proportions, assumed mass/m3, and preconditioning time. The relative importances of each
feature for predicting the corresponding target variable are presented in the SupplementaryMaterial. After
having trained the two-layer random forest model with the tuned hyperparameters on all of the existing
data on concrete mixes, themodel can now be used to predict the target variables and uncertainties in them
for the unseen mixes. The probabilities of the unseen mixes satisfying the set target criteria would then be
calculated; the mixes with the highest probability of satisfying the given targets would be experimentally
validated.

4. Concrete Specification

With the machine learning model in place, we are well-positioned to explore completely unseen concrete
mixes. We below specify two sets of challenging target properties required of the concrete. To emulate
real-life usage on a construction site, where local material availability will determine the composition of
possible mix designs, we use machine learning to seek the best mix from a family of hypothetical mixes,
over a grid of water/cement ratio values. We first specify a total water content of 205 kg/m3, chosen
assuming constant workability requirements of these mixes. The hypothetical mixes are then propor-
tioned following the BRE method of mix design (Teychenné et al., 1997), which uses the relative density
of the aggregates (2.7 in this case) and the percentage of fine aggregate passing through a 600micron sieve
(70% in this case) to calculate the proportions of the remaining constituents and total density of the
concrete for each water/cement ratio. This ensures the proportions of all potential mixes are realistic, and
the mixes are viable. Machine learning is then used to explore this space of mixes, and allows for the
prediction of extensive properties of these mixes which would otherwise need to be experimentally
obtained.

For the first target mix, Low-K, we focus on minimizing carbonation coefficient and therefore
providing high resistance to carbonation. This mix would be ideal for structural applications with severe
exposure conditions, where a high resistance to carbonation is required to protect steel reinforcement from
carbonation-induced corrosion.

For the second target mix, Low-E, we focus onminimizing environmental impact whilst maintaining a
reasonably low carbonation coefficient, which is challenging as these properties are negatively correlated.
This mix would be ideal for large-scale structural applications with moderate exposure conditions, where
low environmental impact is desired.

For both scenarios, we also seek to satisfy constraints on minimum strength, maximum density, and
maximum financial cost. A summary of the two sets of target criteria is presented in Table 1. We now
calculate the probability of successfullymeeting the target criteria for each hypothetical mix so that we can
focus on the most robust mixes that will work in practice. First, for each target variable (carbonation
coefficient, environmental impact, compressive strength, density, and cost) of a given hypothetical mix,
we construct the probability distribution curve of machine learning predictions that reflects the uncer-
tainty in the prediction. Then, we evaluate the area under this curve within the target region. Finally, we
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multiply the areas obtained for each target variable to give the probability of the given mix successfully
meeting the target criteria. We seek the mix that maximizes the probability of success.

Figure 5 demonstrates the probability of successfully meeting the target criteria for the family of
hypothetical mixeswithwater/cement ratios ranging from0.4 to 0.95. Thewater/cement ratio in particular
is varied as this was shown in Figure 1 to be an important variable in the mix parameters. The lines are
plotted using cubic spline fit.

From the potential mixes, the 0.6 water/cement ratio mix (NC0.6) and the 0.8 water/cement ratio mix
(LC0.8) were found. In general, increasing water/cement ratio improves the environmental impact,
whereas reducing the ratio improves the carbonation resistance. A compromise between these two factors
that fulfills the Low-K criteria outlined in Table 1 with high probability of success is achieved by NC0.6.
For the Low-E criteria, the accuratemodel for environmental impact (see the table in Figure 4b)with small
uncertainty drives the sudden increase in probability of success seen in Figure 5 above a water/cement
ratio of 0.75. LC0.8 is selected to be sufficiently far from the boundary to circumvent experimental error in
mixing whilst retaining a high probability of success. The two selected mix designs are given in Table 2.

5. Experimental Validation

5.1. Manufacturing

To validate the properties of the two proposedmixes, several 100mm� 100mm� 100mmcubes of these
mixes were cast. The mixes used crushed limestone gravel with a maximum particle size of 10 mm, and
sharp sand with a maximum particle size of 4 mm and 80% of particles smaller than 1mm. These were the
same constituentmaterials used for the concretes in the training set. The concrete wasmixed for a total of 5
min in a pan mixer, before being transferred to oiled plastic cube molds. Whilst filling, the molds were
vibrated on a vibrating table for a total of 12 s to ensure full compaction of the concrete, and then skimmed

Table 1. Target criteria applied when selecting from available mix designs.

Target criteria Low-K Low-E

Carbonation coefficient (mm day�1/2) < 1:2 < 2:4
Environmental impact (kg CO2e/kg) < 0:150 < 0:108
Compressive strength (MPa) > 30 > 20
Density (kg/m3) < 2,350 < 2,350
Cost (£/kg) < 0:028 < 0:028

Note. Chosen mixes are those most likely to satisfy all of the criteria.

Figure 5. Probability of success of the family of hypothetical mixes satisfying the Low-K (dashed line,
squares) and Low-E (dash-dotted line, triangles) criteria, plotted against water/cement ratio. The

selected mixes are circled.
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with a trowel to achieve a flat exposed face. The concrete cubes were removed from the molds following
an initial setting period of 24 hr, during which they were covered with polythene sheeting to prevent
moisture loss, and then cured under water at 20°C until 28 days old. During casting, a trace amount (0.2%
by mass) of dye was added to the LC0.8 mix for experimental reasons. We measured carbonation
coefficient, compressive cube strength, and water-saturated density in air. Cost and embodied carbon
of each of these mixes was calculated using coefficients for each of the constituent materials from a
published cost estimation spreadsheet (Fibo Intercon, 2019) and the ICE database (Jones and Hammond,
2019) respectively. Experimental uncertainty of 0.7% is assumed for measurements of mass (deriving
from a 0.1 kg precision of weighing scales for a mass measurement of 15 kg). For other experimental
values, uncertainty is quantified through repeat measurements.

5.2. Validation of individual properties

In this section, we measure and validate each of the five properties of the two concrete mixtures. The
machine learning predictions of the five properties (carbonation coefficient, environmental impact,
strength, density, cost) and their experimental values, for both concrete mixes, are presented in
Figure 6. For both concrete mixes, all the predictions agree with the corresponding experimental values
within standard error. We now discuss the measurement and validation of each individual property.

Table 2. The two compositions that are each most probable to fulfill their respective target criteria, so
are proposed for experimental validation.

Target criteria Low-K Low-E

Selected mix NC0.6 LC0.8
Probability of success 0.79 0.89
Cement (CEM I 52.5N) (%) 14.2 10.5
Crushed gravel (%) 48.9 48.2
Sharp sand (%) 28.4 32.6
Water (%) 8.5 8.5
Water/cement ratio 0.6 0.8
Total aggregate/cement ratio 5.5 7.7

Figure 6. Summary of machine learning predictions (orange, hatched) and experimental results (blue) of
properties for the two concrete mixes. Bars correspond to standard error regions for both predicted and

experimental values. Gray areas correspond to the property targets.
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5.2.1. Carbonation coefficient
Carbonation reactions take place in the pores of the cement paste matrix when concrete is exposed to CO2.
The process is modeled as 1-dimensional diffusion according to Fick’s first law (Kropp and Hilsdorf,
1995), where the square of the depth of penetration of CO2, known as the carbonation depth, x, is
proportional to the exposure time, t, by a carbonation coefficient, K, which is itself a function of the
concrete’s properties and the concentration of environmental CO2. Including all boundary conditions, the
relationship is defined (Moreno, 2013):

x tð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 0ð Þ2þK2t

q
, (1)

where t is the time of exposure to a constant concentration CO2 and x 0ð Þ is the initial carbonation depth at
t¼ 0 (often equal to 0 mm).

Since the carbonation process in extremely slow at atmospheric concentrations, taking years to
reach significant carbonation depths, accelerated carbonation tests are performed under elevated CO2

concentrations to gauge the relative performance of different concrete mixes. A test concentration
of 4% is typical, resulting in the value of K herein referred to as the 4% accelerated carbonation
coefficient, K4%.

Noncarbonated material is revealed on the freshly split concrete surface in Figure 7 in pink, due to a
phenolphthalein indicator solution. Carbonated material remains gray. Aggregates are generally of low
permeability to CO2 compared to the matrix of cement paste and pore space. Therefore, they impede the
progression of carbonation through the cement paste and result in a nonuniform tortuous carbonation front
(Huang et al., 2012; Shen and Pan, 2017) seen in Figure 7. To account for this tortuosity, the carbonation
depth is measured using the method outlined in BS 1881-210:2013 (BSI, 2013) at multiple equidistant
locations along the front. The carbonation depth at exposure time t, x tð Þ, is taken as the average of these
measurements, shown in Figure 7.

The carbonation depth data was converted into a 4% accelerated carbonation coefficient,K4% by curve
fitting all available data points of x tð Þ versus ffiffi

t
p

for each mix to equation (1), shown in Figure 8, using the
curve fitting method from BS EN 12390-12:2020 (BSI, 2020). The error in carbonation coefficient arises
from variability of x tð Þ across the carbonation front. To estimate this error, we curve fit x tð Þþσx tð Þ versusffiffi
t

p
, where σx tð Þ is standard deviation of carbonation depth at a given t, and obtain the upper bound for

carbonation coefficient. We then subtract the K4% value from the upper bound to estimate the error in
carbonation coefficient. The same estimate can be obtained using the lower bound for carbonation
coefficient, as the latter is assumed to be normally distributed.

It can be seen in Figure 6 that themachine learning predictions of carbonation coefficient agreewith the
experimentally measured values within standard error. We note that machine learning predictions are

Figure 7.Concrete sample with aggregate/cement ratio of 6.9, with upper surface exposed to 4%CO2 for
49 days, other surfaces contact the rest of the sample. The carbonation front is revealed using 1%

phenolphthalein in ethanol indicator solution (magenta when not carbonated).
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higher than the corresponding experimental values for both mixes, this may be due to prevalence of high
carbonation coefficient values in the training data.

5.2.2. Environmental impact
The environmental impact of the newly proposed concrete mixes was estimated with equation (2):

kgCO2e=kgconcrete ¼
X
i

eif i, (2)

where ei is the embodied CO2 per kg of the ith material, and f i is the mass fraction of the ith material in the
concrete mix.

The coefficients for embodied CO2 in each of the constituent materials, ci, were taken from the ICE
database (Jones and Hammond, 2019) and presented in the Supplementary Material. Experimental error
in this value is estimated by assuming an error inmassmeasurements of 0.7%, based on precision of scales
used for the experimental series of � 0.1 kg for every 15 kg weighed.

Figure 6 shows that the machine learning predictions of environmental impact are in excellent
agreement with the experimental values. This is due to the fact that environmental impact is an
approximately linear function of the concrete composition proportions and therefore straightforward to
predict.

5.2.3. Strength
For each of the newly proposed concrete mixes, following a wet curing period of 28 days, compressive
cube strength was measured in accordance with BS EN 12390-3:2019 (BSI, 2019a) on three 100 mm �
100 mm� 100 mm cube specimens, giving a mean achieved cube strength and standard deviation when
assuming that cube strengths are normally distributed (Dayaratnam and Ranganathan, 1976). This is the
property most commonly measured from field concretes, as it determines the load-bearing capacity of
structures made from this mix.

It can be seen in Figure 6 that the machine learning predictions of strength agree with experimentally
measured values within standard error. Machine learning predictions are lower than the corresponding
experimental values for both mixes due to prevalence of lower strength values for the mixes with similar
cement content in the training set.

Figure 8. Experimental carbonation results showing estimate of carbonation coefficient (black linear fit)
and standard error bounds (gray regions).
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5.2.4. Density
The water-saturated density in air of concrete was measured using the method outlined in BS EN 12390-
7:2019 (BSI, 2019b) for cubes of 100mm� 100mm� 100mm.Three cubes of eachmixweremeasured, and
the standard deviation of these measurements recorded as the experimental error. Low experimental error
indicates that the concrete is well mixed in the fresh state, which should also reduce variability of other
properties.

It can be seen in Figure 6 that the machine learning predictions of density agree with experimentally
measured values within standard error. This is a particular success because the leave-one-out R2 value for
the two-layer model in Figure 4b was lower than for the other properties. Themachine learning prediction
is higher than the experimental value for the NC0.6 Low-K mix and lower than the experimental value for
the LC0.8 Low-E mix, that is, machine learning predictions have larger variance than the experimental
values. This may be because density varies with the aggregate size, which can be different even for similar
mixes, making it difficult to predict density.

5.2.5. Cost
The cost of concrete is calculated using equation (3). Experimental error in this value is estimated using
the same assumptions as experimental error in environmental impact.

£=kgconcrete ¼
X
i

cif i, (3)

where ci is the price per kg of the ith material, and f i is the mass fraction of the ith material in the
concrete mix.

Commercially, the pricing of concrete mixes will vary largely dependent on not only mix proportions
but also scale of project or application. For this reason, representative values have been assumed from
Fibo Intercon (2019) for medium size batches to give realistic relative values between concretes for
optimization, but these should not be considered absolute. The values used are presented in the
Supplementary Material. Experimental error in the cost is estimated by assuming an error in mass
measurements of 0.7%, based on precision of scales used for the experimental series of � 0.1 kg for
every 15 kg weighed.

It can be seen in Figure 6 that the machine learning predictions of cost show excellent agreement with
the experimental values. This is due to the fact that cost, like environmental impact, is an approximately
linear function of the concrete composition proportions and therefore relatively easy to predict.

6. Discussion

6.1. Ramifications for concrete design and specification

The concretes proposed and experimentally validated in this work demonstrate the potential of the
machine learning methodology to predict concrete behavior. Carbonation coefficient, environmental
impact, strength, density, and cost are chosen as examples of constraints in concrete specification, but this
could be extended to other properties, such as: fresh state behavior (e.g. slump, wet density), structural
response (e.g. stiffness, flexural tensile strength), or durability behavior (e.g. permeability, porosity).

Performance-based specification is a growing area of research within concrete durability design,
including design for resistance to carbonation (Younsi et al., 2011; von Greve-Dierfeld and Gehlen,
2016a, 2016b; Wally et al., 2022). Performance-based approaches may allow more economical and
sustainable structures to be realized (Teplý and Vořechovská, 2009). However, to satisfy performance
requirements, concrete properties must be demonstrated through tests such as the compressive strength
and accelerated carbonation tests employed in thiswork. Using knowledge of the performance of previous
specimens, machine learning could reduce the need for trial and error through such testing when selecting
a mix, saving vital time on construction projects. This also enables the selection over multiple different
parameters, including environmental impact, meaning that sustainability can be prioritized whilst still
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fulfilling other requirements. This could herald an era of just-in-time concrete design, with bespokemixes
specified on the construction site that offer optimal properties.

6.2. Future uses of machine learning

The machine learning method employed in this work can operate on any number of input features and
target variables. The generic algorithm can be applied to images of concrete (Lemaire et al., 2005), where
noise in the carbonation fronts or the distribution of aggregates may contain information about concrete
properties and help improve their predictions. The method could also be used to predict the temporal
dynamics of concrete properties. This would be useful to specify concrete mixes that satisfy the given
targets throughout their life cycle.

The approach to extract information from noise has potential applications in areas beyond concrete
design as well. One of these areas is autonomous vehicles. Here, uncertainty in the distance measured to
the object contains information about its shape or type. For example, high uncertainty in distance tells that
the object could be a fence, whereas low uncertainty could be characteristic of a wall. The methodology
could also be applied to additive manufacturing (Rasiya et al., 2021), where noise in metal powder
microstructure can be used to devise the optimal melting process. Another potential application area is
information engineering, where noise in the data transmitted by sensors can be used for object tracking
(Płaczek andBernaś, 2014). Beyond engineering, themethodology could be applied to research of cancer,
which is known to cause genetic chaos (Calin et al., 2003). The information extracted from this chaos
could potentially be used for early cancer detection.

6.3. Conclusions

Thisworkpresented the use of a two-layer random forest regressionmodel to select concretemixdesignswith
the highest probability of successfully achieving various target properties. Themodel extracts information out
of noise, making it particularly applicable to the random distribution of aggregateswithin the concretematrix
that drives variability of concrete properties, such as strength and carbonation coefficient. The methodology
was effective evenwhen trained on sparse data, and gave leave-one-out cross-validationR2 values above 0.50
for difficult-to-predict density and above 0.99 for environmental impact and cost, demonstrating overall
superior performance than both a single-layer linearmodel and single-layer random forest model. Predictions
for two blind mixes were experimentally validated to within standard error. Overall, these results are
promising for future use ofmachine learning that can exploit noise for performance-based design of concrete
across multiple properties, as well as for other materials and applications.
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