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It is widely known that the spread of the human
immunodeficiency virus was slower than expo-
nential in several populations, even at the very
beginning of the epidemic. We show that this implies
a significant reduction in the effective reproductive
rate of the epidemic, and describe a general mech-
anism, related to the clustering properties of the
disease transmission network, that is capable of
explaining this reduction. Our considerations pro-
vide what is, to our knowledge, a new angle on
polynomial epidemic processes, and may have
implications for the choice of strategy against such
epidemics.
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Our purpose in this paper is to discuss polynomial epi-
demic growth in general terms, drawing attention to a
particular aspect which, in our view, has hitherto been
neglected. As a guiding example, consider figure 1, which
plots the growth of the human immunodeficiency virus
(HIV) epidemic in different populations. In several cases
one observes polynomial growth (May & Anderson 1987;
Colgate et al. 1989): over a long time period, the total
number of infected individuals at time t, I(t), is well
described by a polynomial function const × tn for some
integer n. Such a relationship is valid even at early stages
of the epidemic, when global saturation effects could not
yet play a role and when there was no effective inter-
vention, as in US cities in the early 1980s or in Kenya in
the late 1980s.

There are two fundamental parameters governing dis-
ease dynamics, which are central to our discussion
(Anderson & May 1991; Hethcote 2000). The first is the
basic reproductive rate R0, the number of new infections
that a host would produce in a totally susceptible popu-
lation. The second is the effective reproductive rate R
(also called the infectee number or replacement number),
the average number of actual new infections produced by
a host among his contacts during the epidemic process.
These quantities satisfy the inequality R � R0.

The polynomial growth of the HIV/acquired immune
deficiency syndrome (AIDS) epidemic cannot be
explained by saturation effects (Yorke et al. 1978),
because it is observed at the earliest stages. The first expla-
nation was proposed by May & Anderson (1988), arguing
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that heterogeneity in the distribution of contacts signifi-
cantly changes the dynamics of a contact epidemic.
Models incorporating extreme heterogeneous mixing lead
to sub-exponential epidemic curves, because the highly
active classes begin to saturate and new infections come
from the slower dissemination of infection to less active
individuals. Colgate and colleagues (1989) demonstrated
that by making strenuous assumptions about the kind and
distribution of the number of contacts, and postulating
relatively small and independent subgroups within the
population, a polynomial growth rate can indeed be reco-
vered.

Here, we propose an alternative point of view. A simple
argument shows that, for an epidemic that is observed to
spread polynomially over a long period of time, the value
of the effective reproductive rate R is strongly constrained.
Indeed, if R � 1 � c, where c is a positive constant, the
number of infections after time t will exceed (1 � c)t and
the disease spreads exponentially. If R � 1 � c, then of
course the epidemic dies out. Consequently, if the epi-
demic is observed to spread more slowly than exponen-
tially but without disappearing altogether, R must
approach unity.

We conclude in particular that in all of the polynomial
epidemic processes of figure 1, the average number of new
HIV infections must approach one per infected host. This
surprising and counter-intuitive result is in stark contrast
to the estimates of May & Anderson (1987), putting the
basic reproductive rate R0 of HIV well above unity. This
raises the problem of finding the mechanisms responsible
for the reduction from a high value of R0 to the effective
R = 1 required for polynomial growth. How is it possible
that in several different populations, which presumably
have different sexual contact structures, every HIV-
positive individual on average infects only one new per-
son?

The transmission of a contact disease like HIV/AIDS is
constrained by the network of connections along which
transmission is possible (Klovdahl 1985; Potterat et al.
1999; Lloyd & May 2001). This opens the way for the
use of network models to simulate the spread of epidemics
(Lloyd & May 2001; Pastor-Satorras & Vespignani 2001).
The epidemic curves of figure 1 indicate the existence of
networks that give rise to an effective R = 1 and conse-
quently subexponential spreading in epidemic processes
without recovery. It is easily shown that regular lattices,
as well as random spatially constrained networks with
homogeneous spatial distribution, give rise to an effective
R = 1 and polynomial spreading curves. However, such
models clearly do not constitute reasonable models of
human sexual interactions. We know of no random net-
work construction to date that constitutes a reasonable
model of human sexual contacts and that gives polynomial
epidemic curves. Note especially that no small-world net-
work, such as the preferential attachment scale-free net-
work model of Barabási & Albert (1999), is suitable: such
a network necessarily produces exponential spreading in
epidemic processes without recovery.

There is an important network characteristic, not
emphasized in earlier work, that plays a part in contact
epidemic dynamics: the presence of clustering in the trans-
mission network. We propose that network clustering can
have a sufficient local effect on epidemic dynamics to
quench the reproduction rate from a high R0 value to a
local effective R = 1 throughout the population. The
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Figure 1. The time development of the HIV epidemic on a semi-logarithmic plot in several populations. In US cities
(cumulative total of reported HIV infections among homosexuals (HOM) and heterosexuals (HET)) and sub-Saharan African
countries (number of HIV-infected individuals, estimated from the prevalence among women attending antenatal clinics) we
observe a sub-exponential growth, shown by the strong curvature in the plot, well fitted with a polynomial curve (open
symbols (degree of polynomial in parentheses): upright triangles, New York HOM (3); inverted triangles, New York HET (3);
diamonds, San Francisco HOM (3); circles, South Africa × 10�4 (2); squares, Kenya × 10�4 (2)). In Eastern European
countries (cumulative total of reported HIV infections), the epidemic is exponential, as shown by the straight lines of the plot
(filled symbols: triangles, Georgia; squares, Latvia; circles, Lithuania). US data are from Centers for Disease Control and
Prevention, South African data are from the Department of Health of the Republic of South Africa and all other data are
from UNAIDS (http://www.unaids.org)/EUROHIV (http://www.eurohiv.org) databases.

models and arguments of Yorke et al. (1978) May &
Anderson (1988), Colgate et al. (1989), Lloyd & May
(2001) and Pastor-Satorras & Vespignani (2001) all disre-
gard network clustering.

A network is said to be clustered if it contains many
more triangles than its other characteristics would imply.
In the case of heterosexual networks, which contain no
triangles, cycles of length four play the same role. The
presence of many triangles can equivalently be formulated
as the statement that two random contacts of a node are
also connected to each other with high probability. One
obtains a quantitative measure of clustering in a network
by calculating the local clustering coefficient of a node as
the ratio of the number of connections between neigh-
bours of the node and the total possible number of neigh-
bour pairs; the clustering coefficient C of the whole
network is then obtained as the average of the local clus-
tering coefficients over all of the nodes. This measure eas-
ily generalizes to cycles of length four in the case of
heterosexual networks. Many social and biological net-
works are known to be clustered, with a value of C several
orders of magnitude higher than random networks of
equal size and edge density (Watts & Strogatz 1998), and
there are strong indications that human social and sexual
networks also share this property (Rothenberg et al. 1988).

The important point to note is that, in a clustered net-
work, the contacts of an infected individual do not form a
random sample of the population, in contrast to the usual
assumption in epidemic modelling. The proportion of
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Figure 2. An example of the connection between clustering
and multiple infections. Arrows indicate the passage of the
infection. In this example, A passed on the infection to two
individuals, but most people are multiply infected; B gets the
infection from two sources. This local phenomenon reduces
a global R0 value near two to an effective reproductive rate
R that is close to one. Note that, as a result of clustering,
the contacts of an infected person do not form a random
sample of the population, but are much more likely to be
infected than the general population at a given time.

infected persons in this sample is much higher than in the
population at large, even early in an epidemic. In other
words, the number of non-infected individuals in the
immediate neighbourhood of infecting agents is strongly
constrained (Keeling et al. 1997; Read & Keeling 2003).
This leads to a significant reduction in the reproductive
rate that is possibly sufficient to turn an R0 that is well
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over unity into an effective rate of R = 1, which is required
by the observed polynomial growth (see figure 2).

The proposal that network clustering plays a role in
polynomial epidemics is perhaps testable given sufficient
data in a well-documented disease population. Using the
links of the known interaction network and transmission
routes, it would be possible to compare the competing
effects of contact heterogeneity and clustering directly. It
would be of particular interest to study risk networks and
epidemic spread in sub-Saharan Africa, and we hope that
relevant data will become available soon.

If our proposal is correct, the observed time develop-
ment of a contact disease correlates with the clustering
properties of its transmission network. The exponential
spread (figure 1) of the HIV epidemic in Eastern Europe
is compatible with the fact that its principal transmission
mechanism is known to be needle sharing among intra-
venous drug users (UNAIDS 2000). Indeed, there are
indications that needle sharing leads to a network that is
significantly less clustered than social or sexual networks
(Rothenberg et al. 1988). By contrast, the sub-exponential
spread of HIV in sub-Saharan Africa requires an infection
mechanism that satisfies the constraint that the average
number of new infections per host is one. The only mech-
anism compatible with this is likely to be sexual contact
(Walker et al. 2003), with a highly clustered transmission
network. We predict a high abundance of multiple infec-
tions in these populations; therefore, although drug treat-
ment improves the life of HIV-infected individuals,
investing in the encouragement of safe-sex practices is
likely to be a far better strategy against the epidemic.
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