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Improved tensor-product expansions for the two-particle density matrix
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We present a density-matrix functional within the recently introduced framework for tensor-product expan-
sions of the two-particle density matrix. It performs well both for the homogeneous electron gas as well as
atoms. For the homogeneous electron gas, it performs significantly better than all previous density-matrix
functionals, becoming very accurate for high densities and outperforming the Hartree-Fock method at metallic
valence electron densities. For isolated atoms and ions, it is on par with generalized-gradient approximations to
the density-functional theory. We also present analytic results for the correlation energy in the low-density limit
of the free-electron gas for a broad class of such functionals.
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INTRODUCTION

The long-standing quest for an accurate description
electronic correlation with effective single-particle theori
has renewed interest in density-matrix functionals in rec
years. The success of density-functional approaches, b
on the Hohenberg-Kohn-Sham theory@1,2#, is well estab-
lished @3#. Unfortunately, the known approximations to th
requisite universal energy functional of the density are
sufficiently accurate to predict the rates of chemical a
physical processes at room temperatures. This theory
easily be generalized to show that there is a unive
correlation-energy functional of the single-particle dens
matrix as well@4–9#. A density-matrix functional requires a
expression of the two-body matrix in terms of the one-bo
density matrix. An ansatz for the two-body matrix containi
one free parameter was proposed by Mu¨ller @10#, and the
case where this parameter is set to 1/2 has been discuss
Buijse @11#. In addition, Buijse attempted to perform se
consistent calculations but optimized only the lowest t
natural orbitals and occupation numbers and only for the2
molecule. Independently, Goedecker and Umrigar@12# pro-
posed a functional based on a very similar, but se
interaction corrected, two-body matrix and derived the Eu
Lagrange formalism necessary for the numeri
minimization of the functional. Optimizing typically 50 natu
ral orbitals and occupation numbers, necessary to ach
convergence, for a variety of atoms and ions it was fou
that the Goedecker-Umrigar~GU! functional yielded ener-
gies that were comparable or better than those from
generalized-gradient approximation~GGA! in the density-
functional theory and densities that were better than th
from GGA. Following these first encouraging numerical r
sults, several groups of authors have recently proposed
studied the accuracy of various new approximations to
density-matrix functional@13,14,16–25#. However, numeri-
cal studies@14# demonstrate that density-matrix functiona
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to date, give poor correlation energies for the homogene
electron gas.

It has been shown analytically that theper particlecorre-
lation energy of the homogeneous electron gas in the l
density limit approaches a nonzero constant@16# for these
initial functionals. Building on our tensor-product formalis
@14#, below we extend this proof and demonstrate this sh
coming for a broad class of functionals. As regions of lo
densities contribute relatively little to the total energies
solids and molecules, we focus our attention on improv
the results for the high- and intermediate-density regim
We present a density-matrix functional that is more than
order of magnitude more accurate in the high-density lim
for the homogeneous electron gas than those proposed
viously and also represents a significant improvement in
intermediate regime. In atoms, the functional performs si
larly to the GGA@26# in the density-functional theory but no
as well as the GU functional. Because self-interaction c
rections complicate numerical calculations, we do not
force them on our functional in the present work.

NOTATION

For a system of N electrons, the exact energ
functional of the two-body density matrixg(x1x2 ,x18x28)

[^Cuĉ†(x18)ĉ
†(x28)ĉ(x2)ĉ(x1)uC&/2 is

E5E dx1S F2
1

2
¹ r1

2 1U~r1!Gn~x1 ,x18! D ux
185x1

1E dx1dx2

g~x1x2 ,x1x2!

ur12r2u
. ~1!

Here and throughout, we work in atomic units, and thexi are
compound coordinates representing both positionr i and spin
si , so that integration overxi represents integration ove
space and summation over spin channels. In the above
pression, the external potential and one-body density ma
are U(r ) and n(x1 ,x18)[^Cuĉ†(x18)ĉ(x1)uC&, respectively.
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Finally, we note that simple integration of the definitio
reveals the sum rule, which connects the one- and two-b
matrices,

S N21

2 Dn~x1 ,x18!5E dx2 g~x1x2 ,x18x2!. ~2!

As in @14#, we expandg into Hartree and exchange
correlation contributions,

ĝ5ĝH1ĝXC . ~3!

By separation of variables, it is always possible to expa
the unknown exchange-correlation part as a~potentially infi-
nite! sum of tensor products,

ĝXC5(
i

ûi ^ v̂ i . ~4!

In this context we view the two-body density matrix as
two-body operator~a function of four variables! and ûi and

v̂ i as one-body operators~functions of two variables!. Note
that throughout we employ the twisted tensor product~de-
noted as a ‘‘type-III’’ product in@14#!,

@u^ v#~x1x18 ,x2x28![u~x1 ,x28!v~x18 ,x2!,

to combine the one-body operators.
Remarkably, given such an expansion truncated to fi

order, the combination of the symmetry constraints ong with
the sum rule is sometimes sufficient to determine the
four-variable functiong directly in terms of the two-variable
density matrixn. Under these conditions, one can then eva
ate the energy as an explicit functional of the density ma
using Eq.~1!. Minimizing the density-matrix functional ove
all physical density matrices then yields the ground state
the system under this approximation. In this context it
irrelevant that all approximateĝXC do not correspond to
N-representable@15# density matrices.

NEW FUNCTIONAL

Considerable freedom remains in the terms for the exp
sion~4!. Previously, we explored two choices, the ‘‘correct
Hartree-Fock’’~CHF! @14# and the ‘‘corrected Hartree’’~CH!
functional,

ĝXC
CHF52

1

2
~ n̂^ n̂!2

1

2
@An̂~12n̂! ^An̂~12n̂!#,

ĝXC
CH52

1

2
~An̂^An̂!,

respectively. The latter is identical to the one proposed
Buijse @11# and a special case of the one proposed by Mu¨ller
@10#. The GU functional is the CH functional with a sel
interaction correction. In the case of the homogeneous e
tron gas at high densities the GU and CH functionals beco
identical since the self-interaction correction vanishes, bu
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low densities they could differ if the natural orbitals are l
calized. One way to view these functionals is in terms of
coefficient of the Fock termn̂^ n̂, which is21/2 in the CHF
functional and zero in the CH functional. Under truncation
the expansion to one additional term, the value of this co
ficient, through the sum rule, then uniquely determines
form of the remaining tensor product.

HOMOGENEOUS ELECTRON GAS

Figure 1 shows the correlation energies of the result
functionals for the spin-unpolarized homogeneous elect
gas. The corrected Hartree-Fock functional leads to no
provement in the correlation energy over the Hartree-F
functional, and approaches zero for high electron dens
The CH functional is a little better, and represents an i
provement by a factor of 2 over the Hartree-Fock functio
at high densities, where it is overcorrelated. Both function
are overcorrelated at low densities, where they perfo
badly, with the per particle correlation energy approachin
nonzeroconstant. This property of the CH functional ha
been demonstrated analytically in@16#.

Having seen the behavior of the above two functionals
the high-density regime, it is natural to look for a form wi
a Fock coefficient intermediate to those above. A coeffici
of 21/4 for the Fock term results in the following functiona

ĝXC52
1

4
@ n̂^ n̂1An̂~22n̂! ^An̂~22n̂!#. ~5!

Figure 1 shows that this new functional results in a drama
improvement at high densities~low r s) and significant im-
provement at metallic valence densities (1,r s,6). At low
density, the behavior ofall three functionals becomes the
same, resulting in unrealistically large correlation energ
per particle. Note that because this happens at low dens
the contribution of these regions to the total energy is lik
to be small in an inhomogeneous system. We now exp

FIG. 1. Correlation energies of the three functionals in the t
and the exact result@27–29#, versus the mean particle separatio
The solid lines are numerical calculations, the dashed lines are
act results. The vertical lines indicate the range of typical meta
valence densities.
0-2
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the reasons for this behavior to ascertain the feasibility
making improvements in this regime as well.

LOW-DENSITY LIMIT

To understand the approach of the three function
shown in Fig. 1 to one another in the low-density limit, w
recall that Cioslowski and Pernal@16# have determined the
predictions of the CH functional analytically forr s*5.769.
Their analysis applies, provided thatĝXC is represented as
single tensor product of a specific homogeneous form. As
illustration of the anomalous correlation behavior whi
these functionals exhibit in the low-density limit, Fig. 2 com
pares the known many-body momentum distribution w
numerical results for our new functional and the analy
distribution from @16# derived for the CH functional forr s
510. Both density-matrix functionals have very low occup
tion numbers, and lose the characteristic signature of
sharp drop near the Fermi wave vector evident in the ex
curve.

We now show that as a consequence of the sum rule, a
the above functionals reduce to this particular form in
limit of high r s . Fourier transforming Eq.~1!, the total en-
ergy in the homogeneous electron gas becomes

E52E Vdk

~2p!3

k2

2
f k2

1

VE V2dkdk8

~2p!6
gkk8

4p

uk82ku2
, ~6!

wheregkk8 is the momentum-space representation ofĝXC . In
the case thatĝXC is expanded as a sum of tensor products
single-particle operators, its momentum-space representa
will be a sum of tensor products of the momentum-sp
representation of those operators. Because our one-bod
erators are explicit functions of the density matrix, which f
the homogeneous electron gas is diagonal in the momen
representation, their momentum-space representations
also diagonal. Thus, their tensor products become sim
products, and we have

FIG. 2. The momentum distributionf (k) as a function of the
wave vectork: exact@30# ~dashed line!, CH functional@16# ~dash–
dotted line!, and our new functional~solid line! at r s510. The
Fermi wave vector is denotedkf
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gkk85V1@n~k!,n~k8!#1V2@n~k!,n~k8!#1•••, ~7!

where theV are the same functions of the density matrix th
appear in the tensor products expressingĝXC , but with the
tensor-product operator replaced with simple multiplicatio
For example, for the CH functionalgkk852 1

2 An(k)n(k8).
We now show that, in the low-density limit, the analyt

solution presented in@16# for the case whengkk8 consists of
a singleV function of the homogeneous form

V@ln~k!,ln~k!#5lbV@n~k!,n~k8!# ~8!

applies more generally to cases with multiple tensor pr
ucts. The analysis of@16# begins with the scaling ansatz

n~k!5rDh~rnk!,

wherer is the total electron density per spin channel,n is a
constant,h is a universal function that does not depend
the density explicitly, andD5123n due to the constraint o
the total particle density. Note that asr→0, n(k)→0 uni-
formly ~provided thatD.0). This behavior, evident in Fig
2, forms the crux of our argument; we verify it sel
consistently below.

In the above limit, all of theV i in the above functionals
approach homogeneous functions with their own expone
b i . Substitutingn(k) into Eq. ~7!, we then find that a single
homogeneous function dominatesgkk8 , the one with the
smallestb i ([bmin). Therefore, all the conditions for th
analysis of@16# apply, in particular, that

n5
12bmin

3bmin22
.

One can show that not only the above functionals but a
functional satisfying the sum rule and dominated by asingle
homogeneous term in the low-density limit will exhib
bmin51 in that limit. If indeed a single tensor-product ter
dominatesĝ, then the symmetry arguments presented in@14#

imply that ĝXC must take the form

ĝXC5û@ n̂# ^ û@ n̂#. ~9!

The sum rule~2! then implies

E dx28ĝXC5n̂, ~10!

which, using Eq.~9!, can be written as an operator equatio

~u@ n̂# !25n̂, ~11!

which implies thatu@ # must be a homogeneous functio
with exponent 1/2 and therefore thatĝXC is dominated by a
term of homogeneous exponentbmin51. Thereforen50 and
D51; the fact thatD.0 confirms the self-consistency an
the validity of the above analysis.

Reference@16# analyzes the caseb51 in detail, finding
for the correlation energy per particle the result
0-3



-
ac
o
.

nd
an
io

ne
in

a

t

du
x

-
th
ac

la-
55
to

al
c-
s,

ur-
rix
eu-

as
me
ys
ase
e-
his
us,
d-

ch
of

ity
im-
ties,
ma-
nc-

U
or-
r-
tion
on-
lude

in

nd

c-
C
xi-
e

GÁBOR CSÁNYI, STEFAN GOEDECKER, AND T. A. ARIAS PHYSICAL REVIEW A65 032510
ec→2
1

8
,

asr→0. Figure 1 verifies that, in the low-density limit, in
deed the correlation energy of all three functionals appro
one another and, in particular, that they all approach a n
zero constant correlation energy of21/8 hartree per particle

ATOMS

The electrons in solids exhibit both free-electronlike a
localized atomic-orbital behavior. Thus, another import
limiting case for assessing new functionals is their behav
in atoms. Table I presents energies obtained from the
functional for light atoms and ions. For comparison, we
clude energies obtained from the CH and GU functionals
well as from the local-density approximation~LDA !, and the
Perdew-Burke-Ernzerhof~PBE! @26# generalized-gradien
approximation.

The atomic natural orbitals were represented as a pro
of a radial part and spherical harmonics. For a given ma
mal value of the angular momentuml, the program can cal
culate the total energies with a precision that is close to
machine precision. Thus, the only approximation is, in pr

TABLE I. Error in the total energies of atoms for the new fun
tional, in hartrees. For comparison, results are included for the
and the GU functionals and for the LDA and PBE-GGA appro
mations within density-functional theory. The root-mean-square
ror is listed in the last line.

Atom Present CH GU LDA PBE

He 0.01 20.01 0.006 0.07 0.01
Be 20.07 20.1 20.02 0.2 0.04
Ne 0.1 20.07 0.05 0.7 0.07
Be21 20.02 20.005 0.004 0.2 0.04
C41 20.02 20.003 0.003 0.4 0.06
C21 0.1 20.2 0.01 0.4 0.07
O41 0.1 20.2 0.02 0.6 0.1

RMS 0.07 0.1 0.02 0.4 0.06
m

ee
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tice, the number of natural orbitals included in the calcu
tion. In addition to the occupied orbitals we have included
virtual orbitals, which corresponds to all the shells up
l 54.

Table I reveals that, on the whole, the new function
performs for atoms quite comparably to both the CH fun
tional and to PBE. In particular, for the two-electron serie
the new functional is somewhat worse, but for the fo
electron series, it is somewhat better. All density-mat
functionals are generally much better than LDA. For the n
tral atoms, CH and the present functional are not quite
good as PBE, but, for the ions both are better or in so
cases similar to PBE. Note that the CH functional alwa
overestimates the correlation energy, which is not the c
for the new functional. In the GU functional this overcorr
lation is corrected by the self-interaction correction and t
functional yields the best energies for atoms and ions. Th
we feel that the density-matrix functionals provide an a
equate description of atomlike systems.

CONCLUSIONS

We have introduced a density-matrix functional, whi
represents a major improvement over existing functionals
the density matrix. It is very accurate in the high-dens
regime of the homogeneous electron gas, significantly
proves the correlation energies at typical valence densi
and it is comparable to the generalized-gradient approxi
tion in atoms. Although it is not as accurate as the GU fu
tional for atoms, we expect it to perform better than the G
functional for solids. We have also shown that, in our tens
product expansion of the two-body density matrix, little fu
ther improvement can be expected at the present trunca
of two terms. Our test systems span the range of envir
ments encountered in solids and molecules, so we conc
that this new functional is a good candidate to be used
electronic-structure calculations of condensed matter.

ACKNOWLEDGMENT

We thank Cyrus Umrigar for interesting discussions a
helpful comments on the manuscript.

H

r-
-

@1# P. Hohenberg and W. Kohn, Phys. Rev. B136, B864 ~1964!.
@2# W. Kohn and L.J. Sham, Phys. Rev.140, A1133 ~1965!.
@3# M.C. Payneet al., Rev. Mod. Phys.64, 1045~1992!.
@4# E. R. Davidson,Reduced Density Matrices in Quantum Che

istry ~Academic Press, New York, 1976!.
@5# M. Levy, Proc. Natl. Acad. Sci. U.S.A.76, 6062~1979!.
@6# S.M. Valone, J. Chem. Phys.73, 1344~1980!; 73, 4653~1980!.
@7# R.A. Donelly and R.G. Parr, J. Chem. Phys.69, 4431~1978!.
@8# G. Zumbach and K. Maschke, J. Chem. Phys.82, 5604~1985!.
@9# M. Levy, in Density Matrices and Density Functionals, edited

by R. Erdahl and V. H. Smith, Jr.~Reidel, Dordrecht, 1987!, p.
479.

@10# A.K.M. Müller, Phys. Lett.105A, 446 ~1984!.
@11# M. A. Buijse, Ph.D. thesis, Department of Chemistry, Fr
-

University of Amsterdam, Amsterdam, 1991.
@12# S. Goedecker and C.J. Umrigar, Phys. Rev. Lett.81, 866

~1998!.
@13# S. Goedecker and C. J. Umrigar, inMany-electron Densities

and Reduced Density Matrices, edited by J. Cioslowski~Klu-
wer Academic, Dordrecht, 2000!.
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