PHYSICAL REVIEW A, VOLUME 65, 032510
Improved tensor-product expansions for the two-particle density matrix
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We present a density-matrix functional within the recently introduced framework for tensor-product expan-
sions of the two-particle density matrix. It performs well both for the homogeneous electron gas as well as
atoms. For the homogeneous electron gas, it performs significantly better than all previous density-matrix
functionals, becoming very accurate for high densities and outperforming the Hartree-Fock method at metallic
valence electron densities. For isolated atoms and ions, it is on par with generalized-gradient approximations to
the density-functional theory. We also present analytic results for the correlation energy in the low-density limit
of the free-electron gas for a broad class of such functionals.
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INTRODUCTION to date, give poor correlation energies for the homogeneous
electron gas.

The long-standing quest for an accurate description of It has been shown analytically that ther particlecorre-
electronic correlation with effective single-particle theorieslation energy of the homogeneous electron gas in the low-
has renewed interest in density-matrix functionals in recenélensity limit approaches a nonzero constglti] for these
years. The success of density-functional approaches, basé#titial functionals. Building on our tensor-product formalism
on the Hohenberg-Kohn-Sham thedn,2], is well estab- [14], below we extend this proof and demonstrate this short-
lished [3]. Unfortunately, the known approximations to the coming for a broad class of functionals. As regions of low
requisite universal energy functional of the density are noglensities contribute relatively little to the total energies of
sufficiently accurate to predict the rates of chemical andsolids and molecules, we focus our attention on improving
physical processes at room temperatures. This theory cdhe results for the high- and intermediate-density regimes.
easily be generalized to show that there is a universafVe present a density-matrix functional that is more than an
correlation-energy functional of the single-particle densityorder of magnitude more accurate in the high-density limit
matrix as well[4—9]. A density-matrix functional requires an for the homogeneous electron gas than those proposed pre-
expression of the two-body matrix in terms of the one-bodyviously and also represents a significant improvement in the
density matrix. An ansatz for the two-body matrix containingintermediate regime. In atoms, the functional performs simi-
one free parameter was proposed byll&u[10], and the larly to the GGA[26] in the density-functional theory but not
case where this parameter is set to 1/2 has been discussedas well as the GU functional. Because self-interaction cor-
Buijse [11]. In addition, Buijse attempted to perform self- rections complicate numerical calculations, we do not en-
consistent calculations but optimized only the lowest twoforce them on our functional in the present work.
natural orbitals and occupation numbers and only for the H
molecule. Independently, Goedecker and Umridt] pro-
posed a functional based on a very similar, but self-
interaction correcte_d, two-body matrix and derived the Euler- For a system of N electrons, the exact energy
Lagrange formalism necessary for the —numericaliynctional of the two-body density matrixy(xy%,,X;x5)

minimization of the functional. Optimizing typically 50 natu- + +
ral orbitals and occupation numbers, necessary to achlevem,w’ (Xl)"/’ (x2) l/’(XZ) "[/(Xl)|q,>/2 s

convergence, for a variety of atoms and ions it was found
that the Goedecker-UmrigdGU) functional yielded ener- f q (
X1

NOTATION

1
gies that were comparable or better than those from the _EVr21+U(r1)
generalized-gradient approximatid@®GA) in the density-
functional theory and densities that were better than those y(xlxz,xlxz)
from GGA. Following these first encouraging numerical re- f dxdxo————— [ri—r,
sults, several groups of authors have recently proposed and
studied the accuracy of various new approximations to the
density-matrix functiona[13,14,16—2k However, numeri- Here and throughout, we work in atomic units, andxhare
cal studied 14] demonstrate that density-matrix functionals, compound coordinates representing both positjcand spin
Si, SO that integration ovek; represents integration over
space and summation over spin channels. In the above ex-
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Rd., Cambridge CB3 OHE, United Kingdom. areU(r) andn(xy,x))=(¥|§"(x}) ¥(x,)| V), respectively.
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Finally, we note that simple integration of the definitions ~ 0.05
reveals the sum rule, which connects the one- and two-body & g} 0 4 fii oL —
matrices, o
£-0.05
N—-1 , , & o} .
o N(X1,X1) = | dXz ¥(X1X2,X1X2). 2 2 T
2_0.15} 3
5 Lt
As in [14], we expandy into Hartree and exchange- E ~0.2 Exact
correlation contributions, 5-0.25
A . S _o3}
=yy+ . =
Y= YHT YxC () 5-0.35}
By separation of variables, it is always possible to expand -0.4—— = —
the unknown exchange-correlation part agatentially infi- 10 10 10

nite) sum of tensor products,
FIG. 1. Correlation energies of the three functionals in the text
(4) and the exact resu[27-29, versus the mean particle separation.
The solid lines are numerical calculations, the dashed lines are ex-
act results. The vertical lines indicate the range of typical metallic
In this context we view the two-body density matrix as avalence densities.

two-body operatofa function of four variablésandu; and

v; as one-body operatoffunctions of two variables Note
that throughout we employ the twisted tensor prodiate-

YXCZZ Ui®uvj.

low densities they could differ if the natural orbitals are lo-
calized. One way to view these functionals is in terms of the

noted as a “type-III” product i 14]), coefficient of the Fock termen, which is — 1/2 in the CHF
functional and zero in the CH functional. Under truncation of
[U® D |(X1X1 , XoX5) = U(Xy,X5)V (X1 ,X5), the expansion to one additional term, the value of this coef-
ficient, through the sum rule, then uniquely determines the
to combine the one-body operators. form of the remaining tensor product.
Remarkably, given such an expansion truncated to finite
order, the combination of the symmetry constraintsyomith HOMOGENEOUS ELECTRON GAS

the sum rule is sometimes sufficient to determine the full
four-variable functiony directly in terms of the two-variable Figure 1 shows the correlation energies of the resulting
density matrixn. Under these conditions, one can then evalufunctionals for the spin-unpolarized homogeneous electron
ate the energy as an explicit functional of the density matrixgas. The corrected Hartree-Fock functional leads to no im-
using Eq.(1). Minimizing the density-matrix functional over provement in the correlation energy over the Hartree-Fock
all physical density matrices then yields the ground state ofunctional, and approaches zero for high electron density.
the system under this approximation. In this context it isThe CH functional is a little better, and represents an im-
irrelevant that all approximatéyc do not correspond to Provement by a factor of 2 over the Hartree-Fock functional
N-representablél5] density matrices. at high densities, where it is overcorrelated. Both functionals
are overcorrelated at low densities, where they perform
badly, with the per particle correlation energy approaching a
nonzeroconstant. This property of the CH functional has
Considerable freedom remains in the terms for the expanbeen demonstrated analytically [ih6].
sion (4). Previously, we explored two choices, the “corrected Having seen the behavior of the above two functionals in
Hartree-Fock”’(CHF) [14] and the “corrected HartreelCH)  the high-density regime, it is natural to look for a form with
functional, a Fock coefficient intermediate to those above. A coefficient
of —1/4 for the Fock term results in the following functional:

NEW FUNCTIONAL

. 1. . 1 ;— —
y%":z—E(n@n)—z[\/n(l—n)éé\/n(l—n)], i 1. - _ _ _
yxcz—z[n®n+\/n(2—n)®\/n(2—n)]. (5)

~CH 1 =~ r=
y§c= - E( \/E® \/ﬁ)' Figure 1 shows that this new functional results in a dramatic
improvement at high densitiggow rg) and significant im-

respectively. The latter is identical to the one proposed byrovement at metallic valence densities<{(d;<6). At low
Buijse[11] and a special case of the one proposed byiéu  density, the behavior oéll three functionals becomes the
[10]. The GU functional is the CH functional with a self- same, resulting in unrealistically large correlation energies
interaction correction. In the case of the homogeneous eleger particle Note that because this happens at low density,
tron gas at high densities the GU and CH functionals becomehe contribution of these regions to the total energy is likely
identical since the self-interaction correction vanishes, but ao be small in an inhomogeneous system. We now explore
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Gk =2a[n(k),n(k") ]+ Qo[ n(k),n(k) ]+ -+, (7)

where the) are the same functions of the density matrix that

0.8Famaaaaaa. —~._ FExact 1 appear in the tensor products expressigg, but with the
N, tensor-product operator replaced with simple multiplication.

: For example, for the CH functiong. = — 3 n(k)n(k’).

We now show that, in the low-density limit, the analytic
0.4 : ] solution presented ifiL6] for the case whegy,: consists of

a single() function of the homogeneous form

CH
02k, . 1 QIAN(K),ANK) =N PQ[Nn(k),n(k")] (8)
new \
05.\ applies more generally to cases with multiple tensor prod-
0.1 Tk 10 ucts. The analysis dfl6] begins with the scaling ansatz
1
_ A v
FIG. 2. The momentum distributiofi(k) as a function of the n(k)=p=n(p"k),

wave vectoik: exact[30] (dashed ling CH functional[16] (dash—
dotted ling, and our new functiona(solid line) at r¢=10. The
Fermi wave vector is denotdd

wherep is the total electron density per spin channels a
constant,n is a universal function that does not depend on
the density explicitly, ancA =1 — 3v due to the constraint of
the reasons for this behavior to ascertain the feasibility of € total particle density. Note that @s-0, n(k)—0 uni-

making improvements in this regime as well. formly (provided thatA>0). This behavior, evident in Fig.
2, forms the crux of our argument; we verify it self-

consistently below.
In the above limit, all of the); in the above functionals
To understand the approach of the three functional§PProach homogeneous functions with their own exponents
shown in Fig. 1 to one another in the low-density limit, we Bi - Substitutingn(k) into Eq.(7), we then find that a single
recall that Cioslowski and Pernfil6] have determined the homogeneous function dominateg., the one with the
predictions of the CH functional analytically for=5.769. smallests; (=pBmi). Therefore, all the conditions for the

Their analysis applies, provided thac is represented as a 2nalysis of16] apply, in particular, that
single tensor product of a specific homogeneous form. As an 1-B.
illustration of the anomalous correlation behavior which p=__mn
these functionals exhibit in the low-density limit, Fig. 2 com- 3Bmin— 2
pares the known many-body momentum distribution with
numerical results for our new functional and the analytic
distribution from[16] derived for the CH functional for

LOW-DENSITY LIMIT

One can show that not only the above functionals but any
functional satisfying the sum rule and dominated ksirsgle

=10. Both density-matrix functionals have very low Occupa_hornggzjle_net()r]ui I_ter_;n Iflr'] éhe dIow-derllsnty limit W'g etx?'b't
tion numbers, and lose the characteristic signature of thgm'”__ in that imit. 1 indeed a single tensor-produc ) erm
sharp drop near the Fermi wave vector evident in the exadominatesy, then the symmetry arguments presentedli{

curve. imply that yxc must take the form
We now show that as a consequence of the sum rule, all of R o
the above functionals reduce to this particular form in the yxc=u[n]eu[n]. 9
limit of high rg. Fourier transforming Eq(1), the total en-
ergy in the homogeneous electron gas becomes The sum rule(2) then implies
2 2 i - ~
_ f vak k2 if Vidkdk' 4w f X yac=h, (10
(2m®*2 ° V) @m® 77 k' —k[?

. which, using Eq(9), can be written as an operator equation,
whereg,- is the momentum-space representatioygf. In

the case thayyc is expanded as a sum of tensor products of (u[n])?=n, (13)
single-particle operators, its momentum-space representation )
will be a sum of tensor products of the momentum-spacevhich implies thatu[ ] must be a homogeneous function
representation of those operators. Because our one-body opith exponent 1/2 and therefore thggc is dominated by a
erators are explicit functions of the density matrix, which forterm of homogeneous expongs,=1. Thereforev=0 and
the homogeneous electron gas is diagonal in the momentuch=1; the fact thatA >0 confirms the self-consistency and
representation, their momentum-space representations aitee validity of the above analysis.

also diagonal. Thus, their tensor products become simple Referencd16] analyzes the casg=1 in detail, finding
products, and we have for the correlation energy per particle the result
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TABLE I. Error in the total energies of atoms for the new func- tice, the number of natural orbitals included in the calcula-
tional, in hartrees. For comparison, results are included for the CHiion. In addition to the occupied orbitals we have included 55
and the GU functionals and for the LDA and PBE-GGA approxi- virtual orbitals, which corresponds to all the shells up to
mations within density-functional theory. The root-mean-square erj = 4 .
ror is listed in the last line. Table | reveals that, on the whole, the new functional
performs for atoms quite comparably to both the CH func-

Atom Present CH GU LDA PBE " ional and to PBE. In particular, for the two-electron series,
He 0.01 —001 0.006 0.07 001 the new functional is somewhat worse, but for the four-
Be —0.07 —01 ~0.02 02 0.04 electron series, it is somewhat better. All density-matrix
Ne 01 ~007 0.05 0.7 007 functionals are generally much better than LDA. For the neu-
B2+ 002  —0005 0.004 0.2 004 tral atoms, CH and the present functional are not quite as
o 002 0.003 0.003 0.4 0.06 good as RBE, but, for the ions both are bette'r or in some
c2+ 01 02 001 04 0.07 cases §|mllar to PBE. Note that the CH_funptlonaI always
o+ 01 0.2 002 06 01 overestimates the correlation energy, which is not the case

for the new functional. In the GU functional this overcorre-
RMS 0.07 0.1 0.02 0.4 0.06 lation is corrected by the self-interaction correction and this
functional yields the best energies for atoms and ions. Thus,
we feel that the density-matrix functionals provide an ad-
1 equate description of atomlike systems.

€Ec—— 3

. . . T CONCLUSIONS
asp—0. Figure 1 verifies that, in the low-density limit, in-

deed the correlation energy of all three functionals approach We have introduced a density-matrix functional, which
one another and, in particular, that they all approach a norfepresents a major improvement over existing functionals of
zero constant correlation energy ofL/8 hartree per particle. the density matrix. It is very accurate in the high-density
regime of the homogeneous electron gas, significantly im-
ATOMS proves the correlation energies at typical valence densities,
and it is comparable to the generalized-gradient approxima-

The electrons in solids exhibit both free-electronlike andtion in atoms. Although it is not as accurate as the GU func-
localized atomic-orbital behavior. Thus, another importanttional for atoms, we expect it to perform better than the GU
limiting case for assessing new functionals is their behaviofunctional for solids. We have also shown that, in our tensor-
in atoms. Table | presents energies obtained from the newroduct expansion of the two-body density matrix, little fur-
functional for light atoms and ions. For comparison, we in-ther improvement can be expected at the present truncation
clude energies obtained from the CH and GU functionals asf two terms. Our test systems span the range of environ-
well as from the local-density approximationDA ), and the  ments encountered in solids and molecules, so we conclude
Perdew-Burke-ErnzerhofPBE) [26] generalized-gradient that this new functional is a good candidate to be used in
approximation. electronic-structure calculations of condensed matter.

The atomic natural orbitals were represented as a product
of a radial part and spherical harmonics. For a given maxi-
mal value of the angular momentumthe program can cal-
culate the total energies with a precision that is close to the We thank Cyrus Umrigar for interesting discussions and
machine precision. Thus, the only approximation is, in prachelpful comments on the manuscript.
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