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Tensor product expansions for correlation in quantum many-body systems
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We explore a class of computationally feasible approximations of the two-body density matrix as a finite
sum of tensor products of single-particle operators. Physical symmetries then uniquely determine the two-body
matrix in terms of the one-body matrix. Representing dynamical correlation alone as a single tensor product
results in a theory that predicts near zero dynamical correlation in the homogeneous electron gas at moderate
to high densities. But, representing both dynamical and statistical correlation effects together as a tensor
product leads to the recently proposed “natural orbital functional.” We find that this latter theory has some
asymptotic properties consistent with established many-body theory but is no more accurate than Hartree-Fock
in describing the homogeneous electron gas for the range of densities typically found in the valence regions of
solids.

The fundamental difficulties associated wih initio so-  body density matrix to produce an energy functional of the
lutions of the quantum-mechanical many-body problem stenone-body density matrix. In this paper, we build upon this
directly from the large dimensionality of the wave function. perspective and consider tensor product approximations to
Rather than dealing directly with the many-body wave func-the two-body density matrix, which not only serve as gen-
tion, large scale electronic structure calculations determiné&rators of energy functionals of the one-body density matrix,
the ground_state energy by m|n|m|z|ng an energy functionaput also prOVide estimates of the tWO-bOdy matrix in terms of
over the much more manageable space of single-particle oft€ one-body matrix, and thereby shed light on the nature of
bitals. Hohenberg-Kohn-Sham thebAplaces this approach correlation in quantum many-body systems.
on a firm theoretical footing by establishing that exact elec- Notation For a system oN electrons, the exact energy
tronic ground-state energies can be determined in this mafdunctional of the two-body density matrix(x1X;,X;X)

ner by minimizing a universal functional of such orbitals. = (W (x}) T (x5) §(X) h(x1) | ¥)/2, is
Although the requisite universal energy functional is not

known exactly, the local density approximatfaand various 1

improvements theredn’ are sufficient to resolve bond ener- E=f dxl[ - EVflJrU(rl) n(xl,xi)]

gies to a little better than one-tenth of an electron Volt. With
this accuracy, these functionals make possible highly predic-
tive first-principles studies in diverse areas such as the study +f dx. dx Y(X1X2,X1X2) e

of surfaces, point defects, plastic deformation, and chemical B2 e =y

reactions.(For a review see Ref. BAlthough sufficient for

many studies, this error is too large to allow accurate predicHere and throughout, we work in atomic units, andxhere

tion of the rates of microscopic processes at room temperasompound coordinates representing both positjcend spin
ture, thus limiting the ultimate predictive power of thd  S;, so that integration oveg; represents integration over
initio density-functional approach. Whereas, further im-space and summation over spin channels. The external po-
provement of energy functionals for single-particle theoriesential and one-body density matrix ater) andn(x,,X;)

is an active area of research, much less work has been d0|9._e<qf|{/,’r(xi) #(x,)| W), respectively. Finally, the one-body

to construct energy functionals of the one-body densityjensity matrix comes directly frony through the sum rule
matrix>° Such functionals are promising because the density

matrix contains more explicit information than do the Kohn-
Sham orbitals, and an accurate energy functional thus is
likely to be simpler in form. The exact kinetic-energy func-
tional, for instance, is known for the density matrix, but not
the Kohn-Sham orbitals. Computational consideration&\though Eq.(1) is exact,

To date, the only extensively used density-matrix energythe two-body density matriy is a function of four variables,
functional is the Hartree-Fock approximation. One may viewand direct computation with such functions is infeasible. Vi-
Hartree-Fock theory aapproximatingthe two-body matrix — able techniques, however, exist for dealing directly with two-
as a sum of Hartree and exchange terms, each of which is\ariable functions such as the one-body density mafrix
tensor product of the one-body density matrix. Hartree-Fockccordingly, we expandy in terms of two-variable func-
then uses the knowrexactenergy functional of the two- tions,

X1:X1

> n(Xlxi):j dXo Y(X1X2, X1 Xp). (2
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. TABLE I. Implications of Hermiticity and particle permutation
y= E gi®h;, 3 symmetries for tensor product expansionsyof
|

which, by separation of variables, is always possible. Here, Hermiticity Particle Permutation

0; and h; are one-body operator§unctions of two vari- a%h g
ables, we view the two-body density matrix as a two-body

operator(a function of four variables and the tensor product f;
denotes one of the three possible choices for separating fodr!
variables,

®

o
o O
Il
© @
_.—O'
o000 o
o
=5
e
[(@)}}
Il
I+
©_>| ©
- Il
o P R Y
Il
I+
=5
=

. so must tensor products representigg andy,. . These sym-
g®h=g(x1,X1)h(Xz2,%3), metries imply relations with arbitrary constants of propor-
: tionality between the one-body operators of such products,
R which may be absorbed into the one-body operators. Table |
go@h=g(xy,%)h(x5,X1), summarizeshe final result of such considerations for all
d three tensor products. We note that in all cases symmetry
restricts the tensor product to involve onlgiagleone-body
geh=g(x1,x5)h(xz,x}). operator, which remains to be determined.
1 Sum rule Remarkably, when a single term satisfying Her-
miticity and particle permutation is used to represggt or
Quantum statistical considerationd/e wish to maximize "nyc, we can “invert” the sum ru|e(2) and determine the
the physical content of a truncation of the expans®no a  two-body density matrix in terms of the one-body matrix
limited number of terms. Physicallyy(x;,x;) is the quan-  |nserting the resulting form foy into Eq. (1) then generates
tum amplitude for the insertion of a hole at positiepnand  an energy functional of the one-body matrix, which implic-
its instantaneousemoval fromx; , whereasy(x;X,,X1X;) is itly satisfies the sum rule, an important property for obtain-
the quantum amplitude for the insertion of a pair of holes aing good ground-state energies.
X1,%, and their removal fronx; ,x; . Approximating the lat- When terms of Type | represefy. or ., the sum rule
ter events as independent givis y,,=(A%N)/2, the famil- becomegy(Tr§)=0, whered=h or A(1—f), respectively.
iar Hartree approximation, where the factor of 2 maintainsThe solution of this equation i§==06/\ Tro. In either
the normalization implicit in Eq(2). We may then refine this case, the extensivity of Tr makes the resulting solution
mean-field behavior and defiile= y,+ ¥,., Where¥y,. rep-  irrelevant in the thermodynamic limN—cc. For products of
resents exchange and correlation effects, which we then exrype Ill, the sum rule combined with appropriate symme-
pand, without loss of generality, according to E8). tries givesg?=9, so thatg= /6 with & defined as above.
The most significant drawback of the Hartree approxima- Fermionic antisymmetry Fermionic antisymmetry,
tion is thatyy is not properly antisymmetric with respect to y(x;X,,X;X5) = — y(X1X2,X5,X1), IS a stronger condition
particle exchangex{ < x5), so that, potentially, many terms than the particle permutation symmetry condition considered
will be required in¥y, to restore this symmetry. Alternately, above and imposes more complex constraints. Two-body
we may explicitly ensure antisymmetry and take=y,r  density matricesy that satisfy this condition may always be
+ ¥.=(ATA—n [ )/2+ % . In this form, ¥,¢ is precisely —written with Type-lI and -lll products appearing in corre-
the familiar Hartree-Fock approximation. Again, we may ex-sponding pairs of the forn§7§-0,;0 and with Type-lI
pand the unknowry, as in Eq.(3). products(were we to consider suthvhose one-body terms
Finally, we note that a fundamental difficulty exists when are separately antisymmetric.
using a finite number of terms of Type Il. Because of the The two viable functionals remaining after the above con-
instantaneous nature of the quantum event thagpresents, siderations involve a Type-lll representation for eithgg or
we expect for normal systems that—0 as the insertion %.. Unfortunately, these forms do not consist of symmetric
x1x5 and removalx; X, locations are placed at ever further pairs of Type-I and -Ill products. To satisfy antisymmetry,
distances from one another. In an extended system with thene could take y,.=—(0;N)/2, so that ¥=(A7A
expansion fory containing a finite sum of terms of Type Il, —f;/)/2, which is simply the Hartree-Fock approximation.
taking this limit while keeping the insertion points near oneTo go beyond this, antisymmetry requires represenfings
another and the removal points near one another will violate pair of terms so thay= (ATA—AA+870—8 5 0)/2.
this asymptotic condition unless each Type-Il term is identi- The sum rule for this latter extension on Hartree-Fock is
cally zero. Accordingly, we focus below on approximating g2— g(Tr§)=n(1—), which has no solution fo§ in ex-
¥xc and . with terms of Type | and III. tended systems unless Jvanishes in the thermodynamic
SymmetryPhysical symmetries of significantly restrict  |imit. Under this condition, we have the solutio§=
the allowable forms for the tensor products appearing in ex-- \[f(1—f), where the signs of the eigenvalues in the
pansions of the fornt3) for ¥, and .. We first consider square root must be chosen to ensur@F0. For the para-
Hermiticity y(X;Xz,X1X) = ¥* (X1X3 ,X1X2) and particle per- magnetic phase we consider below, the natural choice is to
mutation symmetryy(X;X»,X1X5) = ¥(XoX1,X5X;) for each  take the upper sign for the spin-up block of the density ma-
of the three types of tensor product, and defer discussion dfix and the lower sign for the spin-down block. The struc-
Fermionic antisymmetry until after the sum rule immediatelyture of the energy functiondll), however, is such that for
below. Because botly, and yyr respect these symmetries, this choice the resulting energy functional iofis equal to
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that generated by representifig as a single Type -lll prod- This analysis holds for the present two functionals at all par-
uct. ticle number densities and, in fact, for all theories of the form
Representation of the functional§he above discussion of Eq. (5) in which gy — f,f» ask—o andf,—0.
leaves the energy of two representations of the two-body Numerical ResultsTo determine the total energy of the
matrix to explore: corrected Hartree theoryy=%y  homogeneous electron gas within the corrected Hartree and
—(\/ﬁfﬂ JA)/2, and corrected Hartree-Fock theofy= ¢ Hartree-Fock approximations, we exploit spherical symme-
—[VA(1—-n) fﬁ\/ﬁ(l—ﬁ)]/z_ The corresponding energy try and reducef, to a single variable functiof(k), which
functionals may be represented either directly in terms of th&ve represent on a radial mesh of variable spacing. We then
one-body density matrix for use with direct density-matrix minimize Eq.(5) with conjugate-gradients techniques subject
methods:°~* or in terms of the spectrdl‘natural orbital’)  to both the constraint that(k) corresponds to a total df
representation of the density matrix. electrons and the Fermi constraint that (k)<1. The lat-
The energy functiona(l) contains one-body terms that ter constraint we implement by definind(k)=(e "
may be evaluated directly in terms of the one-body density+1) 2, wherex is then free to range over the real line.
matrix. The remaining two-body term may be computed in To evaluate the energy functional in terms of the fillings,
terms of the two-point density c(rq,r») we integrate numerically the kinetic and exchange-
Ezslszy(xlxz,xlxz)_ When the above functionals representcorrelation terms in E¢(5). A key step in producing accurate

paramagnetic states, this density has the following form ijesult is to avoid numerical integration across the familiar
PR . ,
terms of the eigenvectoréatural orbitals ¢, and corre- logarithmic singularity atk=k’. For corrected Hartree

sponding eigenvalue@ccupanciest; of the one-body den- theory, we avoided this by integrating the exchange-
sity matrix A, correlation terms once by parts analytically and then evalu-

ating the result numerically. For the corrected Hartree-Fock
1 case, we found it more efficient to approximate the Coulomb
c(rra)=5 42 1 F1i(r) dF (1) oj(r2) dF (1) potential by a Yukawa potentiag™“'/r, and numerically
N extrapolate the results to=0. For these latter calculations,
we found it more efficacious to work in the grand canonical
-2 Gijdi(r)éf (1)@ (r)éi(r2) |, (9 ensembleholding the chemical potential fixed while mini-
N mizing E— uN) than to impose the particle-number con-
where for corrected Hartree and Hartree-Fock theories, wstraint explicitly.
take gi;=f; f; and g;;=f; f;+ \/fi(l—fi)fj(l—fj), re- The above procedures introduce four sources of numerical
spectively. error: the finite spacing of the radial mesh, the finite extent of
The first of the above forms corresponds to the naturathe mesh irk space, the error in the extrapolation in the case
orbital functional proposed by Goedecker and Umrgas  of using the Yukawa potential, and the finite number of it-
an ansatzamong the many possible choices for tbg, erations involved in our searches for the minima. Through
which satisfy the sum rule. Here, we see that this form is thenalysis and numerical experiments, we determine these er-
unique Type-Ill correction to Hartree theory, which satisfiesrors to be less than 16, 104, 103, and 10 ° Hartree per
basic symmetries and the sum rule. This theory has beeparticle, respectively, over the range of densities which we
studied analytically in the case of the homogeneous electroexplored (0.0%r4<30).
gas in the low-density regime {>5.77) 16 Here, we present We found the minimization of the above functionals prob-
results for both this theory and our new corrected Hartreelematic for two reasons. First and foremost, the discretized
Fock theory over a range of densities that includes both thisepresentation of the one-dimensional functidit) on the
low-density regime and the regime more physically relevantadial mesh artificially stabilizes any discontinuitiesfifk),
in the valence region of solids;<5.77. which may arise during the minimization process. This may
Homogeneous electron ga3ranslational invariance in be managed by taking care to ensure that the radial mesh
the homogeneous gas ensures that the natural orbitals gpeovides sufficient resolution to describe any large gradients
plane waves. The remaining freedomfinlies in the occu- that arise inf(k). An additional factor making the calcula-
pancy eigenvalue$, . For the paramagnetic phase, the en-tions difficult is that both the corrected Hartree and corrected

ergy (1) then takes the following form: Hartree-Fock functionals suffer from a very large condition
) ) , number(in excess of 10).
_ Vdk k 1 [ Vvidkdk Am Figure 1 compares our results for the correlation energy

(277)3?fk v (277)6 gkk’|kr_k 29 (5)
whereV is the volume of the system and the factor of 2 in
the kinetic energy arises from the sum over spin.

The minimum of this energy functional occurs when
S(E— uN)/ 6 =0. For both corrected Hartree and corrected
Hartree-Fock, this gives to leading order|&k— <,

per particle of the electron gas with established many-body
predictions. We find that at very low densities, both new
theories begin to approach one another gs. For even
moderately low densitieg {>6), both theories perform sig-
nificantly worse than Hartree-Fock, overestimating the cor-
relation energy by factors from 2 to 4 and higher. For the
densities experienced in the valence regions of solids (6
S(E— uN)/ 8f ~k*—C/ \/f— >r¢>1), corrected Ha_rtree—Fock theo@iamondﬁ; crosses
over from overcorrelation to undercorrelation, whereas cor-
where C is a constant. Hence, for larde the momentum rected Hartree theorfcircles overcorrelates by roughly the
density scales ak.~|k| ™8, in agreement with the random same amount by which traditional Hartree-Fock theory un-
phase approximation and other many-body calculatténs. dercorrelates. For higher densities more representative of
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< 005 Fock theory resemble one another quite closely and, in fact,
£ ) O, PO #egmmmmm o approach one another ag approaches infinity. This occurs
T o .= because in this limit both theories predict very low occupa-
13"0-05' = :° ] tions f;<1 so that the central quantities in the two theories
£ -0.1f /,—" o ° t\\ approach one anotha‘ri,fj+\/fi(l—fi)fj(l—fj)—m/fi f;.
o I It 0 ° ] The next panel of the figure illustrates that for densities
3'0'15 Pt ° outside the range of the applicability of the analytic solution
& -0.2p--" ° ] (r¢<5.77), this solution predict§>1 for sufficiently low
5_0_25, ° ) momenta. We find that for such densities, the momentum
= ° distributions of corrected Hartree and corrected Hartree-Fock
% -0.3p T theory exhibit different behaviors at low momenta. Our nu-
®_0.35} ] merical results indicatéo better than 1 part in £ that the
3 0.4— momentum distribution of corrected Hartree theory saturates

T 4072 10° r o> 10° to f=1 near the Fermi leve(See inse}j.Such behavior is in

s

direct contradiction of analytic and numerical many-body re-

FIG. 1. Correlation energy per particle of the uniform electron Sults for the electron ga&*?and is contrary to the previously
gas. Hartree-Focthorizontal dashed lineexact many-body results reported experience with atoms for this functionah con-
(Refs. 18 and 19(dashed curve corrected Hartree theorfppen  trast, the momentum distribution of corrected Hartree-Fock
circles, corrected Hartree-Fock theofgiamonds, analytic results ~ theory never saturates the Fermi occupation constraint, but
(Ref. 19 for corrected Hartree theory in the low-density lifgblid ~ rather approaches a value kat 0, which remains less than
curve. unity. We find that in the high density limit the corrected

Hartree-Fock momentum distribution in fact approaches the
atomic cores (2 rs), the corrected Hartree-Fock theory pre- standard Hartree-Fock result, ultimately leading to zero cor-
dicts near zero correlation. At these same densities, correctgdlation energy for this theory in the high-density limit.
Hartree theory remains overcorrelated and gives a somewhat In conclusion, we find that when the two-body density
better estimate of the correlation energy than does traditionahatrix is expanded beyond traditional Hartree and Hartree-
Hartree-Fock. The asymptotic form of the corrected Hartreg=ock theories in terms of tensor products of one-body opera-
results in the high-density limit appears to be a straight lineors, fundamental symmetries allow the exchange-correlation
in our plot, which corresponds to the form of the leadinghole sum rule to be inverted to give estimates for the two-
order terms of the Gell-Mann-Brueckner expansibhiow-  body matrix, and thus correlations, in terms of the one-body
ever, the prefactors which we find by a least squaresfit, matrix. By approximating the two-body density matrix in
~0.05701log()—0.0714, are only correct to within a little terms of the one-body density matrix, this approach also
better than a factor of 2: the well-known analytic values forleads to energy functionals of the one-body density matrix.
these coefficients are 0.0311 an€.0480, respectively. This The addition of the first separable term beyond Hartree
suggests that the favorable reports for atoms for the naturaheory shows some promising features when applied to the
orbital functionat may be in part a consequence of the highhomogeneous electron gas, such as giving the correct scaling
densities experienced in atomic cores, the limited particlbehavior of the momentum distribution in the high-
number in the low-density regions, and the self-interactionmomentum limit and the correct scaling behavior of the cor-
corrected nature of those calculations. relation energy in the high-density limit. However, the elec-

Figure 2 shows momentum distributions fog=7 and tronic states predicted by this functional are significantly
r<=1, which are representative of what we find at low andovercorrelated, and attempts to improve upon it by the addi-
high densities, respectively. We note that the numerical retion of further terms without additional constraints would
sults of both theories exhibit the correct® scaling at large  only add more freedom in the minimization and lead to fur-
momenta and that we have very good agreement with theher overcorrelation. Hence, before adding a second term, it
analytic results for the natural orbital functiotfalapplicable  is important to use antisymmetry to constrain the first such
for rg>5.77). term to be the traditional Fock term. This gives the second

We observe that at low densities the momentum distribufunctional that we considered, corrected Hartree-Fock
tions of both corrected Hartree theory and corrected Hartreeheory. This second theory undercorrelates the electron gas

FIG. 2. Predictions of momen-
tum distribution of the uniform
electron gas for,=7 andry=1:

- % corrected Hartree theorydashed
g N curveg, corrected Hartree-Fock
N X theory(dotted curvek analytic re-
10 T ., 5 sults (Ref. 16 for corrected Har-
h \ tree theory in the low density limit
\ (solid curve. Inset shows magni-

107 . . ] 10 fied view.
0.01 0.1 10 100 0.01 0.1 10 100
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