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Tensor product expansions for correlation in quantum many-body systems
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We explore a class of computationally feasible approximations of the two-body density matrix as a finite
sum of tensor products of single-particle operators. Physical symmetries then uniquely determine the two-body
matrix in terms of the one-body matrix. Representing dynamical correlation alone as a single tensor product
results in a theory that predicts near zero dynamical correlation in the homogeneous electron gas at moderate
to high densities. But, representing both dynamical and statistical correlation effects together as a tensor
product leads to the recently proposed ‘‘natural orbital functional.’’ We find that this latter theory has some
asymptotic properties consistent with established many-body theory but is no more accurate than Hartree-Fock
in describing the homogeneous electron gas for the range of densities typically found in the valence regions of
solids.
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The fundamental difficulties associated withab initio so-
lutions of the quantum-mechanical many-body problem s
directly from the large dimensionality of the wave functio
Rather than dealing directly with the many-body wave fun
tion, large scale electronic structure calculations determ
the ground-state energy by minimizing an energy functio
over the much more manageable space of single-particle
bitals. Hohenberg-Kohn-Sham theory1,2 places this approach
on a firm theoretical footing by establishing that exact el
tronic ground-state energies can be determined in this m
ner by minimizing a universal functional of such orbitals.

Although the requisite universal energy functional is n
known exactly, the local density approximation2 and various
improvements thereon3–7 are sufficient to resolve bond ene
gies to a little better than one-tenth of an electron Volt. W
this accuracy, these functionals make possible highly pre
tive first-principles studies in diverse areas such as the s
of surfaces, point defects, plastic deformation, and chem
reactions.~For a review see Ref. 8.! Although sufficient for
many studies, this error is too large to allow accurate pre
tion of the rates of microscopic processes at room temp
ture, thus limiting the ultimate predictive power of theab
initio density-functional approach. Whereas, further i
provement of energy functionals for single-particle theor
is an active area of research, much less work has been
to construct energy functionals of the one-body dens
matrix.3,9 Such functionals are promising because the den
matrix contains more explicit information than do the Koh
Sham orbitals, and an accurate energy functional thu
likely to be simpler in form. The exact kinetic-energy fun
tional, for instance, is known for the density matrix, but n
the Kohn-Sham orbitals.

To date, the only extensively used density-matrix ene
functional is the Hartree-Fock approximation. One may vi
Hartree-Fock theory asapproximatingthe two-body matrix
as a sum of Hartree and exchange terms, each of which
tensor product of the one-body density matrix. Hartree-F
then uses the known,exact energy functional of the two-
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body density matrix to produce an energy functional of t
one-body density matrix. In this paper, we build upon th
perspective and consider tensor product approximation
the two-body density matrix, which not only serve as ge
erators of energy functionals of the one-body density mat
but also provide estimates of the two-body matrix in terms
the one-body matrix, and thereby shed light on the nature
correlation in quantum many-body systems.

Notation. For a system ofN electrons, the exact energ
functional of the two-body density matrixg(x1x2 ,x18x28)

[^Cuĉ†(x18)ĉ
†(x28)ĉ(x2)ĉ(x1)uC&/2, is

E5E dx1H F2
1

2
¹ r1

2 1U~r1!Gn~x1 ,x18!J U
x

185x1

1E dx1dx2

g~x1x2 ,x1x2!

ur12r2u
. ~1!

Here and throughout, we work in atomic units, and thexi are
compound coordinates representing both positionr i and spin
si , so that integration overxi represents integration ove
space and summation over spin channels. The external
tential and one-body density matrix areU(r ) and n(x1 ,x18)

[^Cuĉ†(x18)ĉ(x1)uC&, respectively. Finally, the one-bod
density matrix comes directly fromg through the sum rule

S N21

2 Dn~x1x18!5E dx2g~x1x2 ,x18x2!. ~2!

Computational considerations. Although Eq.~1! is exact,
the two-body density matrixg is a function of four variables,
and direct computation with such functions is infeasible. V
able techniques, however, exist for dealing directly with tw
variable functions such as the one-body density matrix.10–15

Accordingly, we expandg in terms of two-variable func-
tions,
7348 ©2000 The American Physical Society
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ĝ5(
i

ĝi ^ ĥi , ~3!

which, by separation of variables, is always possible. He
ĝi and ĥi are one-body operators~functions of two vari-
ables!, we view the two-body density matrix as a two-bod
operator~a function of four variables!, and the tensor produc
denotes one of the three possible choices for separating
variables,

ĝ^

I
ĥ5g~x1 ,x18!h~x2 ,x28!,

ĝ^

II
ĥ5g~x1 ,x2!h~x28 ,x18!,

ĝ^

III
ĥ5g~x1 ,x28!h~x2 ,x18!.

Quantum statistical considerations. We wish to maximize
the physical content of a truncation of the expansion~3! to a
limited number of terms. Physically,n(x1 ,x18) is the quan-
tum amplitude for the insertion of a hole at positionx1 and
its instantaneousremoval fromx18 , whereasg(x1x2 ,x18x28) is
the quantum amplitude for the insertion of a pair of holes
x1 ,x2 and their removal fromx18 ,x28 . Approximating the lat-
ter events as independent givesĝ'ĝH[(n̂ I

^ n̂)/2, the famil-
iar Hartree approximation, where the factor of 2 mainta
the normalization implicit in Eq.~2!. We may then refine this
mean-field behavior and defineĝ[ĝH1ĝxc , whereĝxc rep-
resents exchange and correlation effects, which we then
pand, without loss of generality, according to Eq.~3!.

The most significant drawback of the Hartree approxim
tion is thatgH is not properly antisymmetric with respect
particle exchange (x18↔x28), so that, potentially, many term
will be required inĝxc to restore this symmetry. Alternately
we may explicitly ensure antisymmetry and takeĝ5ĝHF

1ĝc[(n̂ I
^ n̂2n̂ III

^ n̂)/21ĝc . In this form, ĝHF is precisely
the familiar Hartree-Fock approximation. Again, we may e
pand the unknownĝc as in Eq.~3!.

Finally, we note that a fundamental difficulty exists wh
using a finite number of terms of Type II. Because of t
instantaneous nature of the quantum event thatg represents,
we expect for normal systems thatg→0 as the insertion
x18x28 and removalx1x2 locations are placed at ever furth
distances from one another. In an extended system with
expansion forg containing a finite sum of terms of Type I
taking this limit while keeping the insertion points near o
another and the removal points near one another will vio
this asymptotic condition unless each Type-II term is iden
cally zero. Accordingly, we focus below on approximatin
ĝxc and ĝc with terms of Type I and III.

Symmetry. Physical symmetries ofĝ significantly restrict
the allowable forms for the tensor products appearing in
pansions of the form~3! for ĝxc and ĝc . We first consider
Hermiticity g(x1x2 ,x18x28)5g* (x18x28 ,x1x2) and particle per-
mutation symmetryg(x1x2 ,x18x28)5g(x2x1 ,x28x18) for each
of the three types of tensor product, and defer discussio
Fermionic antisymmetry until after the sum rule immediate
below. Because bothgH andgHF respect these symmetrie
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so must tensor products representingĝxc andĝc . These sym-
metries imply relations with arbitrary constants of propo
tionality between the one-body operators of such produ
which may be absorbed into the one-body operators. Tab
summarizesthe final result of such considerations for a
three tensor products. We note that in all cases symm
restricts the tensor product to involve only asingleone-body
operator, which remains to be determined.

Sum rule. Remarkably, when a single term satisfying He
miticity and particle permutation is used to representĝxc or
ĝc , we can ‘‘invert’’ the sum rule~2! and determine the
two-body density matrixg in terms of the one-body matrixn.
Inserting the resulting form forg into Eq. ~1! then generates
an energy functional of the one-body matrix, which impli
itly satisfies the sum rule, an important property for obta
ing good ground-state energies.

When terms of Type I representĝxc or ĝc , the sum rule
becomesĝ(Tr ĝ)5ô, whereô5n̂ or n̂(12n̂), respectively.
The solution of this equation isĝ56ô/A Tr ô. In either
case, the extensivity of Trô makes the resulting solution
irrelevant in the thermodynamic limitN→`. For products of
Type III, the sum rule combined with appropriate symm
tries givesĝ25ô, so thatĝ5Aô with ô defined as above.

Fermionic antisymmetry. Fermionic antisymmetry,
g(x1x2 ,x18x28)52g(x1x2 ,x28 ,x18), is a stronger condition
than the particle permutation symmetry condition conside
above and imposes more complex constraints. Two-b
density matricesg that satisfy this condition may always b
written with Type-I and -III products appearing in corre
sponding pairs of the formĝ I

^ ĝ– ĝ III
^ ĝ and with Type-II

products~were we to consider such! whose one-body terms
are separately antisymmetric.

The two viable functionals remaining after the above co
siderations involve a Type-III representation for eitherĝxc or
ĝc . Unfortunately, these forms do not consist of symmet
pairs of Type-I and -III products. To satisfy antisymmetr
one could take ĝxc52(n̂ III

^ n̂)/2, so that ĝ5(n̂ I
^ n̂

2n̂ III
^ n̂)/2, which is simply the Hartree-Fock approximatio

To go beyond this, antisymmetry requires representingĝc as
a pair of terms so thatĝ5(n̂ I

^ n̂2n̂ III
^ n̂1ĝ I

^ ĝ2ĝ III
^ ĝ)/2.

The sum rule for this latter extension on Hartree-Fock
ĝ22ĝ(Tr ĝ)5n̂(12n̂), which has no solution forĝ in ex-
tended systems unless Trĝ vanishes in the thermodynami
limit. Under this condition, we have the solutionĝ5
6An̂(12n̂), where the signs of the eigenvalues in t
square root must be chosen to ensure Trĝ50. For the para-
magnetic phase we consider below, the natural choice i
take the upper sign for the spin-up block of the density m
trix and the lower sign for the spin-down block. The stru
ture of the energy functional~1!, however, is such that fo
this choice the resulting energy functional ofn̂ is equal to

TABLE I. Implications of Hermiticity and particle permutation
symmetries for tensor product expansions ofg.

Hermiticity Particle Permutation

ĝ I
^ ĥ ĝ5ĝ†, ĥ5ĥ† ĝ5ĥ

ĝ II
^ ĥ ĝ5ĥ† ĝ56ĝT, ĥ56ĥT

ĝ III
^ ĥ ĝ56ĥ† ĝ5ĥ
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that generated by representingĝc as a single Type -III prod-
uct.

Representation of the functionals. The above discussion
leaves the energy of two representations of the two-b
matrix to explore: corrected Hartree theory,ĝ5ĝH

2(An̂ III
^ An̂)/2, and corrected Hartree-Fock theory,ĝ5ĝHF

2@An̂(12n̂) III
^ An̂(12n̂)#/2. The corresponding energ

functionals may be represented either directly in terms of
one-body density matrix for use with direct density-mat
methods,10–15 or in terms of the spectral~‘‘natural orbital’’!
representation of the density matrix.

The energy functional~1! contains one-body terms tha
may be evaluated directly in terms of the one-body den
matrix. The remaining two-body term may be computed
terms of the two-point density c(r1 ,r2)
[Ss1s2

g(x1x2 ,x1x2). When the above functionals represe
paramagnetic states, this density has the following form
terms of the eigenvectors~natural orbitals! f i and corre-
sponding eigenvalues~occupancies! f i of the one-body den-
sity matrix n̂,

c~r1 ,r2!5
1

2 F4(
i j

f i f jf i~r1!f i* ~r1!f j~r2!f j* ~r2!

22(
i j

gi j f i~r1!f i* ~r2!f j* ~r1!f j~r2!G , ~4!

where for corrected Hartree and Hartree-Fock theories,
take gi j 5Af i f j and gi j 5 f i f j1Af i(12 f i) f j (12 f j ), re-
spectively.

The first of the above forms corresponds to the natu
orbital functional proposed by Goedecker and Umrigar3 as
an ansatzamong the many possible choices for thegi j ,
which satisfy the sum rule. Here, we see that this form is
unique Type-III correction to Hartree theory, which satisfi
basic symmetries and the sum rule. This theory has b
studied analytically in the case of the homogeneous elec
gas in the low-density regime (r s.5.77).16 Here, we presen
results for both this theory and our new corrected Hartr
Fock theory over a range of densities that includes both
low-density regime and the regime more physically relev
in the valence region of solids,r s,5.77.

Homogeneous electron gas. Translational invariance in
the homogeneous gas ensures that the natural orbitals
plane waves. The remaining freedom inn̂ lies in the occu-
pancy eigenvaluesf k . For the paramagnetic phase, the e
ergy ~1! then takes the following form:

E52E Vdk

~2p!3

k2

2
f k2

1

V E V2dkdk8

~2p!6 gkk8

4p

uk82ku2 , ~5!

whereV is the volume of the system and the factor of 2
the kinetic energy arises from the sum over spin.

The minimum of this energy functional occurs whe
d(E2mN)/d f k50. For both corrected Hartree and correct
Hartree-Fock, this gives to leading order asuku→`,

d~E2mN!/d f k;k42C/Af k,

where C is a constant. Hence, for largek, the momentum
density scales asf k;uku28, in agreement with the random
phase approximation and other many-body calculation17
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This analysis holds for the present two functionals at all p
ticle number densities and, in fact, for all theories of the fo
of Eq. ~5! in which gkk8→Af k f k8 ask→` and f k→0.

Numerical Results. To determine the total energy of th
homogeneous electron gas within the corrected Hartree
Hartree-Fock approximations, we exploit spherical symm
try and reducef k to a single variable functionf (k), which
we represent on a radial mesh of variable spacing. We t
minimize Eq.~5! with conjugate-gradients techniques subje
to both the constraint thatf (k) corresponds to a total ofN
electrons and the Fermi constraint that 0< f (k)<1. The lat-
ter constraint we implement by definingf (k)[(e2x

11)22, wherex is then free to range over the real line.
To evaluate the energy functional in terms of the filling

we integrate numerically the kinetic and exchang
correlation terms in Eq.~5!. A key step in producing accurat
result is to avoid numerical integration across the famil
logarithmic singularity atk5k8. For corrected Hartree
theory, we avoided this by integrating the exchang
correlation terms once by parts analytically and then eva
ating the result numerically. For the corrected Hartree-Fo
case, we found it more efficient to approximate the Coulo
potential by a Yukawa potential,e2kr /r , and numerically
extrapolate the results tok50. For these latter calculations
we found it more efficacious to work in the grand canonic
ensemble~holding the chemical potential fixed while min
mizing E2mN) than to impose the particle-number co
straint explicitly.

The above procedures introduce four sources of numer
error: the finite spacing of the radial mesh, the finite exten
the mesh ink space, the error in the extrapolation in the ca
of using the Yukawa potential, and the finite number of
erations involved in our searches for the minima. Throu
analysis and numerical experiments, we determine these
rors to be less than 1023, 1024, 1023, and 1026 Hartree per
particle, respectively, over the range of densities which
explored (0.01,r s,30).

We found the minimization of the above functionals pro
lematic for two reasons. First and foremost, the discreti
representation of the one-dimensional functionf (k) on the
radial mesh artificially stabilizes any discontinuities inf (k),
which may arise during the minimization process. This m
be managed by taking care to ensure that the radial m
provides sufficient resolution to describe any large gradie
that arise inf (k). An additional factor making the calcula
tions difficult is that both the corrected Hartree and correc
Hartree-Fock functionals suffer from a very large conditi
number~in excess of 107).

Figure 1 compares our results for the correlation ene
per particle of the electron gas with established many-b
predictions. We find that at very low densities, both ne
theories begin to approach one another asr s→`. For even
moderately low densities (r s.6), both theories perform sig
nificantly worse than Hartree-Fock, overestimating the c
relation energy by factors from 2 to 4 and higher. For t
densities experienced in the valence regions of solids
.r s.1), corrected Hartree-Fock theory~diamonds! crosses
over from overcorrelation to undercorrelation, whereas c
rected Hartree theory~circles! overcorrelates by roughly the
same amount by which traditional Hartree-Fock theory u
dercorrelates. For higher densities more representative
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atomic cores (1.r s), the corrected Hartree-Fock theory pr
dicts near zero correlation. At these same densities, corre
Hartree theory remains overcorrelated and gives a some
better estimate of the correlation energy than does traditio
Hartree-Fock. The asymptotic form of the corrected Hart
results in the high-density limit appears to be a straight l
in our plot, which corresponds to the form of the leadi
order terms of the Gell-Mann-Brueckner expansion.20 How-
ever, the prefactors which we find by a least squares fiE
'0.0570 log(rs)20.0714, are only correct to within a little
better than a factor of 2: the well-known analytic values
these coefficients are 0.0311 and20.0480, respectively. This
suggests that the favorable reports for atoms for the nat
orbital functional3 may be in part a consequence of the hi
densities experienced in atomic cores, the limited part
number in the low-density regions, and the self-interact
corrected nature of those calculations.

Figure 2 shows momentum distributions forr s57 and
r s51, which are representative of what we find at low a
high densities, respectively. We note that the numerical
sults of both theories exhibit the correctk28 scaling at large
momenta and that we have very good agreement with
analytic results for the natural orbital functional16 ~applicable
for r s.5.77).

We observe that at low densities the momentum distri
tions of both corrected Hartree theory and corrected Hart

FIG. 1. Correlation energy per particle of the uniform electr
gas. Hartree-Fock~horizontal dashed line!; exact many-body results
~Refs. 18 and 19! ~dashed curve!, corrected Hartree theory~open
circles!, corrected Hartree-Fock theory~diamonds!, analytic results
~Ref. 16! for corrected Hartree theory in the low-density limit~solid
curve!.
ed
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Fock theory resemble one another quite closely and, in f
approach one another asr s approaches infinity. This occur
because in this limit both theories predict very low occup
tions f i!1 so that the central quantities in the two theor
approach one another,f i f j1Af i(12 f i) f j (12 f j )→Af i f j .

The next panel of the figure illustrates that for densit
outside the range of the applicability of the analytic soluti
(r s,5.77), this solution predictsf .1 for sufficiently low
momenta. We find that for such densities, the moment
distributions of corrected Hartree and corrected Hartree-F
theory exhibit different behaviors at low momenta. Our n
merical results indicate~to better than 1 part in 105) that the
momentum distribution of corrected Hartree theory satura
to f 51 near the Fermi level.~See inset.! Such behavior is in
direct contradiction of analytic and numerical many-body
sults for the electron gas17,19and is contrary to the previousl
reported experience with atoms for this functional.3 In con-
trast, the momentum distribution of corrected Hartree-Fo
theory never saturates the Fermi occupation constraint,
rather approaches a value atk50, which remains less than
unity. We find that in the high density limit the correcte
Hartree-Fock momentum distribution in fact approaches
standard Hartree-Fock result, ultimately leading to zero c
relation energy for this theory in the high-density limit.

In conclusion, we find that when the two-body dens
matrix is expanded beyond traditional Hartree and Hartr
Fock theories in terms of tensor products of one-body ope
tors, fundamental symmetries allow the exchange-correla
hole sum rule to be inverted to give estimates for the tw
body matrix, and thus correlations, in terms of the one-bo
matrix. By approximating the two-body density matrix
terms of the one-body density matrix, this approach a
leads to energy functionals of the one-body density matr

The addition of the first separable term beyond Hart
theory shows some promising features when applied to
homogeneous electron gas, such as giving the correct sc
behavior of the momentum distribution in the hig
momentum limit and the correct scaling behavior of the c
relation energy in the high-density limit. However, the ele
tronic states predicted by this functional are significan
overcorrelated, and attempts to improve upon it by the ad
tion of further terms without additional constraints wou
only add more freedom in the minimization and lead to fu
ther overcorrelation. Hence, before adding a second term
is important to use antisymmetry to constrain the first su
term to be the traditional Fock term. This gives the seco
functional that we considered, corrected Hartree-Fo
theory. This second theory undercorrelates the electron
FIG. 2. Predictions of momen-
tum distribution of the uniform
electron gas forr s57 andr s51:
corrected Hartree theory~dashed
curves!, corrected Hartree-Fock
theory~dotted curves!, analytic re-
sults ~Ref. 16! for corrected Har-
tree theory in the low density limit
~solid curve!. Inset shows magni-
fied view.
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in the high-density limit but still overcorrelates at lower de
sities. This indicates that the addition of further terms w
only hold the promise of producing a more accurate fu
tional if additional, appropriate constraints are imposed.
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