Tale 8
Taylor Instability and Ship Waves

1. Why does water pour out of an overturned glass? Is the
answer so obvious, as it seems? It is known that the atmospheric
pressure can hold a water column as high as 10 meters. So, why
cannot it hold a glass of water? To answer this question consider
first the waves on the surface of a heavy liquid. Since the main
force, acting on the liquid, is the force of gravity, the dispersion
relation w(q) must contain the free fall acceleration g. From the
dimensional analysis, we get

w (q) =9q;  w(g) =+/9q. (1)

If the surface tension « is also taken into account, then the
only combination that has the dimensions of w? is ag®/p, where
p is the density of the liquid. Combining the gravity and the
surface tension, we obtain the following dispersion relation for
the gravity-capillary waves:

w*(q) =9q+%q3 w(q) =, gq+%-q3 (2)

Now consider an inverted geometry, when the heavy liquid is
above a light one, or the air. Then the free fall acceleration
changes its direction with respect to the normal to the surface
of the heavy liquid, and the dispersion relation acquires the form

w(q) = \l—9q+%-q3- (3)

For small ¢ the frequency w(q) is imaginary, which means that
the flat surface is unstable with respect to the ripple formation
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(the Rayleigh-Taylor instability ). If the radius R of the glass is
smaller than \/a/gp (¢ > \/gp/a), then the surface of the liquid
is stable and the glass be better called a capillary.

2. Let us now restrict ourself to small g. Then w(q) = /g9.
Consider the ripples on the surface of water caused by a stone,
dropping into the water. The surface profile &(r, t) looks roughly

as .
zqr—zwt

f(r,t)w/ / w2 — gq b

— e i)2 / Q(f/q_ - expligr cos a — i4/gqt] =

/ dg+/qJo(gr)e —iV9qt

47r\/_
where Jy(z) is the Bessel function. Introducing a dimensionless

variable 22 = gqt?, we can simplify the above expression:
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E(r,t) = / dz2’ JO( 2)e (4)

27r92t3

Introducing also a new function
D(y) = [ 2dzdo(y2?)e ™, (5)

of the variable y = r/gt?, we obtain £(r,t) in the form

) (6)

) r
P

21 g3 (gt2
So, the ripples look like concentric circles shown in Fig 1. The

leading crest moves with acceleration, and its radius obeys the
law

§(r,t) =

ry o~ gt2
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To find the surface profile £(r,t) well ahead of the leading wave,
i.e. at r > gt?, we must find ®(y) for y > 1. The Bessel function
oscillates rapidly, leading to the decay of ®(y). At z < 1 the
exponential e~ in Eq (5) could be set to unity. The result is
that ®(y) ~ y~>/% and

1 r 1 gt? 1
§(r,t) ~ ﬁ@(ﬁ) ~ ﬁ(g )~ S22 (7)
This result could be foreseen, because the profile well ahead
of the leading wave must be time-independent, and, therefore,
the asymptote of ®(y) should be a power of its argument that
compensate ¢~ in the pre-factor in Eq (6).

To find the form of the ripples at » < 7 ~ gt?, i.e. behind

the leading wave, we go back to the wave vector representation:
£~ /dqqlﬂ/da expligr cos a — i4/gqt]. (8)

At r < gt?, the exponential in the integrand oscillates, so, gr >
1. The integral over « is determined by the small values of «,
when cosa = 1 — a?/2. So,

¢~ [ dgexpligr —iy/gqt]. (9)

The phase ¢(r,t) = qr — ,/gqt of the integrand changes rapidly.
Therefore, the integral is determined by those values of the wave
vector ¢(r,t) which correspond to the stationary values of the
phase. The stationary phase conditions for ¢(r,t) and ¢(r,1)
look like

r

t g _ gt2
2
o(r,t) = \/gqt — qr = % (11)
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Thus,
£~ exp[—igt2/4'r‘] ~ sin[gt2/4r},

and the n-th crest corresponds to ¢, = 2wn + /2. Therefore,
the radius r, of the n-th ripple is

gt?
T = -
" 2n(4n+1)

We can see that the phase of a monochromatic wave changes
with the velocity

w o wg g

U ) T R w

On the other hand, a wave packet is a bunch of monochromatic
waves, propagating with different velocities. As a result, the
wave vector g(r,t), associated with the wave packet, changes in
space and time and the radius r(¢) of a circular ripple varies as
r(t) = gt*/4¢, (Eq (11)). Therefore, the group velocity is

dr gt g v

T T 26, 2w 2

3. Consider now the waves generated in deep water by a ship
moving at a constant velocity V. This problem differs from that
of a dropping stone in that the perturbation is not localized like
d(t)d(r), but remains stationary in the moving frame (6(r—Vt)).
Under these conditions, the propagator G(w,q) = (w? — gq)™*
must be substituted by Gy = [(w—qV)?—gq]~!. The stationary
character of the wave pattern means that w = 0. Thus,

d? expliqr
o[l
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The integration over the angle 8 (cosf = qV /qV') gives

do 1 V94
~ dfé(cos ) — Y=—
/ (qV cosB)? —gg+id  2,/9qqV|sin0| / (cos qV )

and
cosf = vy /V.

This relation is known as Cherenkov’s condition. So,

£~ /exp[z’q'r cos(a — )]

The moving ship generates a circular wave at every point of its
course. The resulting wave wave front is the envelope of these
waves. Given the relations
vpnt  Vitcos6

2 2

r=vgt =

Uph
cos 6 = % vpn, = V cos 0,

the coordinates x and y of the wave front as the functions of
time ¢ are:

z(t) =Vt —rcosf = g@ — cos® ) (13)

y(t) =rsinf = % - cosfsinf (14)

Since the phase ¢(z,y,t) is constant along the wave front, it is
convenient to express all the arguments through it:

gt? gt
= - = ]_
o(r:?) 4r 2V cosf’ (15)
20V
t= % - cos 6. (16)



Substituting Eq (16) into Egs (13) and (14), we obtain the para-
metric equations of the wave front:

V2

. ¢(2 — cos® ) cos b (17)

X

V2
y=— -dcos’fsinf (18)
g

The consecutive crests of the waves behind the ship (shown in
Fig. 2) are given by the consecutive semi-integer values of n in
the equality ¢ = 27(n 4+ 1/2). One can see that our wave front
has a folding point. Indeed, both z(#) and y(6) have maxima at
the same value of § = 6y (cosy = \/2/3), which means that the
wave front folds as it is shown in Fig 2. The reason for this is
that, due to dispersion, the phase velocity increases with time,
and, therefore, the wave front folds and propagate in the same
direction as the ship at the same velocity.

Example 1. Show that the shape of the wave front near its
folding point is semi-cubic. i.e. its shape is given by the equation
n? = (3, where n and ( are appropriate coordinates.

Example 2. Show that the wave fronts, corresponding to dif-
ferent phases, lie within a wedge (the Kelvin ship-wave wedge)
of semi-angle @ = 19.5° (tana = 27%/2),



