
LECTURE 3

Digression on Superconductivity

Superconductivity was discovered in 1911 in Leiden by Kammerling-
Onnes, who observed vanishing the resistivity in mercury
below critical temperature Tc = 4.15 K. The further stud-

ies in Leiden shown that superconductivity is destroyed by
magnetic field. Switching on the magnetic field generate in

a superconducting ring current, which persists in the ring
as long as the temperature T remains below Tc. A new sig-

nificant step in studies of this phenomena was made in 1932
in Berlin by Meissner and Ochsenfeld, who proved that the
transition from a normal to superconducting state in mag-

netic field is a reversible transition between two thermo-
dynamic phases. This implied application of the theory of

phase transition to superconductivity (V.L. Ginzburg and

L.D. Landau 1950).
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Spontaneous symmetry breaking. Second order

phase transition. Ginzburg-Landau theory

Let us begin with an assumption that superconductivity

occurs as a result of the second order transition. Supercon-
ducting phase corresponds to spontaneous breaking of the

global gauge invariance and is characterised by the com-
plex order parameter Ψ(r). According to Landau’s theory,

the Helmholtz free energy Fs of a superconducting phase is
given by the expansion:

Fs − Fn =

[

α

2
(T − Tc)|Ψ|2 + β

4
|Ψ|4

]

V (1)

where Fn is the free energy of the normal phase and V is
the volume of the sample. If the order parameter varies in

space, the volume V in Eq (1) is replaced by the integral
∫

dr. An extra contribution to free energy should take care
of the finite gradients of the order parameter 1 .
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This term shows that the uniform order parameter corre-
sponds to the minimum of the free energy F . The vector

potential of magnetic field A should be added in order to
preserve the local gauge invariance. The energy of magnetic
field B = curl A,

∫

dr
B2

8π
=
∫

dr
(curl A)2

8π
1The BCS microscopic theory of superconductivity claims that the supercurrent

is driven by the Cooper pairs, which have charge 2e. So, all formulae in this lecture
should be corrected by the replacement e → 2e.
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should also be added to free energy. Finally, in the presence

of external field H, the Legendre transform to the Gibbs
potential G = F −BH/4π should be made. Therefore, the

Gibbs thermodynamical potential looks like

Gs −Gn =
∫

dr






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
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+
(curl A)2

8π
− H curl A

4π
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. (3)

In order to find the spatial distribution of magnetic field B

and the order parameter Ψ, one have to minimize the Gibbs
potential. Varying it with respect to Ψ∗(r), we obtain two

contributions: from the bulk and from the surface. Since
the equilibrium configuration corresponds to a minimum of

G, these contributions both vanish. This gives the equation

D

[(

i∇− eA

ch̄

)]2

Ψ+ α(T − Tc)Ψ + β|Ψ|2Ψ = 0 (4)

with the boundary condition

n

(

i∇− eA

ch̄

)

Ψ = 0 (5)

Variation of the Gibbs’ potential (3) with respect toA leads
to the equation of magnetostatics

curl curl A =
4πj

c
(6)

j = ieD

(

Ψ∗∇Ψ−∇Ψ∗Ψ+ 2
eA

ch̄
Ψ∗Ψ

)

(7)

and a standard boundary condition for tangential compo-
nents of magnetic field

(curl A)t = Ht (8)
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The system (3), (5), (6) and (7) with the boundary con-

ditions (4) and (8) define a mathematical problem of the
theory of superconductivity.

Meissner Effect, London Penetration Depth

First of all, let us introduce the order parameter in the

absence of gradients:

Ψ0 =

√

√

√

√

α(T − Tc)

β

Then, introducing a new variable

Ψ = ψΨ0, (9)

the equations can be rewritten as

−ψ + |ψ|2ψ − ξ2(∇+ i
eA

ch̄
)2ψ = 0 (10)

curl curl A = − 1

λ2L

(

iΦ0

4π
(ψ∗∇ψ −∇ψ∗ψ) +Aψ∗ψ

)

,(11)

where

ξ =

√

√

√

√

D

α(Tc − T )
(12)

If one assumes that

ψ(r) = exp [iφ(r)] ,

then

curl curl A = − 1

λ2L

(

Φ0

2π
∇φ+A

)

. (13)
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Acting by the operator curl on both sides of Eq (13), as-

suming the gauge div B = 0 and recalling that curl A = B,
we obtain Londons’ equation:

∇2 B =
B

λ2L
. (14)

Thus, the magnetic field decays with the depth z of a su-

perconductor assy exp(−z/λL), where λL is the penetration
depth.

Critical magnetic field parallel to a

superconducting film.

Consider a very thin film of thickness d, parallel to the x, y-

plane, in a parallel magnetic fieldB, pointing in the positive
y-direction. The vector-potential A may be chosen in the

form
Ay = Az = 0, Ax = Bz.

For this gauge, the order parameter ψ(x, y, z) has the form

ψ(x, y, z) = φ(z) exp[i(pxx+ pyy], −d
2
< z <

d

2
.

The gradient term of the Ginzburg-Landau free energy per
unit volume looks now as

F∇ =
D

2d

∫

dz



p2y |φ(z)|2 +
∣

∣

∣

∣

∣
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d
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eBz

ch̄

)
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∣

∣

∣

∣

∣

2


 (15)

In the leading approximation in magnetic field

φ(z) = const, py = 0
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and the term containing magnetic field can be treated by

the means of perturbation theory. This gives the quadratic
term in the Ginzburg-Landau free energy in the form

Fquadr =
1

2





De2B2d2

c2h̄2
+ α(T − Tc)



 |φ|2 . (16)

Eq (16) shows that a parallel magnetic field B causes a

destruction of superconductivity even at T < Tc if B > Bc,
where

Bc =

(

ch̄

ed

)





α(Tc − T )

D





1/2

. (17)

The relation (17) can be expressed in the form of the fol-
lowing estimate

ξ ∼ L2
H(Bc)

d
, LH(B) =

√

√

√

√

ch̄

eB
. (18)

Eqs (17) and (18) are valid if d ≪ LH , and if the film
thickness d is smaller, than the correlation length ξ,

d≪ ξ.

Thus, there are two parameters of dimension of length,
which characterise spatial variation in superconductors: the

London penetration depth λL for screening of magnetic field
and correlation length of superconductivity ξ for the varia-

tion of superconducting order parameter ψ. Depending on
the ratio of these two lengths, one has to distinguish be-

tween the type I superconductors (λL ≪ ξ) and the type II
superconductors (λL ≫ ξ).
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Type I superconductors. Intermediate state.

Surface energy of NS Boundary

As one can see from Eq (3), if the magnetic fieldB is pushed

out of the volume of a superconductor, this adds and extra
energy B2/8π to the free energy of the superconductor unit
volume. When this extra energy exceeds the free energy

difference ∆F = Fn−Fs, the sample transit into the normal
state. This corresponds to the thermodynamic critical field

Bc.

Bc =
√

8π(Fn − Fs), (19)

Consider a wide superconducting plate of thickness h in

a perpendicular magnetic field B. In order to minimize
the energy, the superconducting order parameter is zero in

some areas of the sample, giving way to magnetic flux, and
non-zero in another areas. A layered structure of supercon-
ducting and normal stripes of widths an and as respectively

is formed (see Fig 1). We will see that a ∼ as ∼ an ≪ h
and, therefore, the ns-boundary is almost a plane, parallel

to the direction of the magnetic field. At the ns-boundary
the magnetic field is equal to Bc and it remains the same

in the whole normal region. Since the magnetic flux is con-
served,

B(as + an) = Bcan;
as
an

=
Bc −B

B

Thus, the bulk energies in both s and n domains are equal,

and the balance of magnetostatic and surface energies de-
termines the sizes of domains a. Magnetostatic energy is
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N S

B

Figure 1: Intermediate state in a superconducting plate in a perpen-
dicular magnetic field field

related to the redistribution of magnetic field in the area of
linear size of the order of a. The energy per single domain

is of the order of B2
ca

2l, where l is the dimension in the
direction, perpendicular to the plane of Fig 1. The surface

energy per single domain is σnshl, where σns is the surface
energy per unit are. Since the number of domains per unit
transverse length is N = 1/a, the total free energy of the

layered structure is

F = B2
cal +

σnshl

a
. (20)

The minimum of this free energy is reached at the equilib-

rium value of a, which is equal to

a =

√

√

√

√

σnsh

B2
c

∼
√
hδ, δ =

σns
B2

c

. (21)
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The physical meaning of δ is the thickness of the ns-boundary.

The profiles of the field B(x) and the order parameter ψ(x)
at the ns-boundary is given by the Ginzburg-Landau and

Maxwell equations (4)-(7) and shown in Fig 2. The value
of the surface energy σsn is given by the extra contribution
to the Gibbs potential G.

σns =
∫ +∞

−∞
dx[G(x)−Gs] =

B2
c

8π
(−λL +

√
2ξ). (22)

This implies that the surface energy σns is positive if λL <√
2ξ (type I superconductors). Under these conditions,

the free energy minimum corresponds to the minimum of
the surface area of the ns-boundary. This prevent the ns-

boundary from meandering and described layered structure
is stable. Under the the opposite condition (type II super-

conductors), the surface energy is negative, which, natu-
rally, creates some problems.

Type II superconductivity.

a.
b.

H

ψ
ψ

H

x x

Figure 2: Dependence of the order parameter ψ and magnetic field H
on transverse coordinate near the NS-boundary for type I (a/.) and
type II (b/.) superconductors
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Vortices. Lower critical field.

If the surface energy is negative, the normal and supercon-

ducting phases cannot not remain in a contact, because the
boundary meandering leads to lower energy. The result is
that the penetration of magnetic flux into the supercon-

ductor occurs in the form of strings, along which the order
parameter vanishes. Since superconductivity is destroyed at

the centre of this string, the magnetic field can penetrate
into the superconducting body along the string. If ξ ≪ λL,

superconductivity is destroyed in a relatively narrow region
near the string, the modulus of the order parameter remains

a constant in the rest of the sample. As for the phase φ of
the order parameter, it acquires 2π while azimuthal angle θ
make a complete circle around the string. Since the prob-

lem is azimuthally symmetric, this means that

φ = θ + const (23)

The current j is proportional to the gradient of the phase

and, therefore, circulate around this string, which forms a
superconducting vortex (Abrikosov vortex).

Acting by curl on both sides of Eq (13), we obtain the
equation for the magnetic field B around the vortex:

B+
1

λ2L
curl curl B =

Φ0

2π
curl ∇φ = Φ0 δ(r⊥)2. (24)

The right-hand side of Eq (24) shows, in particular, that
the total magnetic flux, associated with the single vortex,

2The second part of Eq(24) can be obtained by integrating both its sides over a
small area near origin
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r

H

j

ψ

Figure 3: Dependence of the order parameter ψ, current j and magnetic
field H on distance r from the axis of the vortex

is equal to the flux quantum Φ0. The solution of equation
for the magnetic field B has the following form

B =
Φ0

2πλ2L
K0

(

r

λL

)

, K(x) =







ln(1/x), x≪ 1;

x−1/2e−x, x≫ 1.
,

(25)

where K0(x) is the MacDonald function of the zeroth order.
The profiles for the magnetic field B, the current density

j ∝ curl B and the modulus of the order parameter |ψ| are
presented in Fig 3.

The extra energy ǫ per the vortex unit length, which is
required for creation of this defect of the long range order,
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is

ǫ =
1

8π

∫

dr⊥
[

B2 + λ2L (curl B)2
]

(26)

Using Eq (25), we obtain

ǫ =
Φ0

8π
B(0) =

(

Φ0

4πλL

)2

ln

(

λL
ξ

)

. (27)

Since the vortex has a finite energy, it cannot be created
in a weak field because it costs the energy. Therefore, the
Meissner effect remains until the external magnetic field

exceeds the lower critical field Hc1. If the external magnetic
field H0 is finite, a demagnetisation energy

−BH0

4π

can make a strong negative contribution to the total Gibbs’
potential of the vortex and make creation of the vortices

favorable. The field at which this compensation occurs is
called the lower critical field Hc1:

Hc1 =
4πǫ

Φ0
=

Φ0

4πλ2L

[

ln

(

λL
ξ

)

+ .08

]

. (28)

For H > Hc1, magnetic flux starts to penetrate into su-
perconductor, and diamagnetic momentum decreases with
increasing magnetic field H0.

Mixed state. Upper critical field

Thus, the magnetisation curve for the bulk type II super-
conductors looks like that shown in Fig 4. For H < Hc1, the
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Meissner effect leads to ideal diamagnetism. For H > Hc1,

the vortices begin to penetrate into superconductors, form-
ing a new, mixed state, while the Meissner phase becomes

meta-stable 3. For Hc1 < H < Hc1 ln(λL/ξ), the vor-
tices stay well apart, overlapping only by exponential tails.
The penetration of magnetic field is heterogeneous. For

H ≫ Hc1 ln(λL/ξ), the vortices are strongly overlapped,
which leads to almost homogeneous penetration of mag-

netic flux into the superconductor. The diamagnetic mag-
netisation M remains significant, but it goes down, when

the magnetic field increases, to disappear in a strong enough
magnetic field Hc2, the upper critical field.

To find the upper critical field, we must consider instability
with respect to the superconducting transition in the pres-
ence of the magnetic field. Looking at the linear in ψ part

of Eq (17) and recalling the spectrum of the Schrödinger

3Thermodynamic critical field Hc ∼ Φ0/ξλL corresponds to the limit of stability
of the Meissner phase.

H

M

Bc1 Bc2

Figure 4: Magnetisation curve in type II superconductors
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operator in magnetic field, we find that

−1 + ξ2
eHc2

ch̄
= 0, Hc2 =

Φ0

2πξ2
. (29)

This shows that superconductivity dies out in the type two

superconductors only when Abrikosov’s vortices come so
close to each other, that their normal cores overlap4.

4The normal core of the vortex has a radius of the order of the correlation length
ξ.
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LECTURE 3

Digression on Superconductivity

PROBLEMS

P3.1. Surface Tension

of the Liquid-Vapour Interface

Add to Van der Waals Free energy of the Liquid-Vapour

near the Critical Point an extra term, which takes into ac-
count the energy dependent on the density gradient ∇ρ.
Find dependence of the surface tension σLV of the Liquid-
Vapour Interface on vicinity to the critical point.

P3.2. Critical Current in a Wire

A superconducting wire carries a super-current I. Assum-

ing the order parameter Ψ being dependent only on coordi-
nate z along the wire, and neglecting the effect of magnetic

field caused by this current, find the gradient ∇ Ψ of the
order parameter and the modulus |Ψ| of the order parame-

ter. Find the maximal value Ic of super-current.

P3.3. Anderson-Higgs Phenomenon

Consider small variations of the order parameter ψ(r) and

1
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the vector potential A(r) (div A = 0) in a superconductor.

Assume that in equilibrium ψ(r) = ψ0 exp [iθ] , (θ = const)
and A(r) = 0. Small variations are

A = δA(r), δψ = i δθ(r) ψ0 exp [iθ] + δ|ψ|

Find the free energy as a quadratic form in δA(r), δ|ψ| and
δθ(r) and find out the eigenvalues of this form1. How the

Goldstone theorem changes if the interaction of the order
parameter with the gauge field is taken into account ?

P3.5. Quantisation of Magnetic Flux

in a Hollow Superconductor

Consider an infinite sample of a superconductor with a

1Pay attention to the fact that one of these eigenvalues vanishes due to the gauge
invariance of the theory

Γ

H

Figure 1: A sample of a superconductor with a cylindric hole with the
flux Φ of magnetic field H through this hole.
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cylindrical hole (see Fig 1). External magnetic field is di-

rected along the axis of this cylinder. Consider circulation
of the vector potential A along the close loop Γ (see Fig 1)

around the hole and show that the total magnetic flux Φ
through the hole is quantised in units Φ0

Φ = Φ0 · n =
2πh̄c

2e
· n

P3.6. JOSEPHSON EFFECT.

P3.6.A. Consider two superconductors 1 and 2 connected
through a short - its length L is shorter, than the correlation

length (L ≪ ξ) - and narrow constriction (see Fig 2). The
order parameters in superconductors are

1 2

L

Figure 2: Two superconductors connected through the weak link.
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ψ1,2 = ψ0 exp (i χ1,2) . (1)

The Ginsburg-Landau equation in the constriction is dom-

inated by the gradient term and the boundary conditions
expressed in Eq (1). Find solution of this equation and

used it for obtaining the supercurrent J in the constriction
in the following form:

J = Jc sinφ, φ = χ2 − χ1. (2)

Express the critical super-current Jc through the length L

and cross-section area S of the constriction.

P3.6.B. TWO JOSEPHSON JUNCTIONS

Two superconductors are connected by two weak links, as
shown in Fig 3 . Find out how the critical current Jc of the
whole junction depends on magnetic flux Φ through the

hole between these superconductors.

1
2Φ

Figure 3: Two superconductors connected through two weak links with
the flux Φ of magnetic field propagating through the loop.


