
LECTURE 2

Mean Field Approximation

and Landau Theory

of type II Phase Transitions

Lecture 1 was devoted to phenomenological thermodynam-

ics of phases and phase transitions. In the rest of this
course, we will analyse the criticality, i.e. thermodynamics

at the temperatures close to that of the phase transition, by
the means of statistical physics. Concentrating attention at

universal features connected with criticality. Phenomenol-
ogy appears yet many times during these lectures.

1. Structural Transitions

Displacement Type

and Order-Disorder Type.

We begin with a simple model of a structural transition in
a crystal: each unit cell of a crystal forms a ’cage’ for an
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atom with mass m. This atom is allowed to be displaced

by the distance xi from its position of equilibrium, all other
atoms are fixed. The Lagrangian L of the crystal has the

following form :

L =
∑

i

{

m

2
ẋ2i −

A

4

(

x2i − a2
)2
}

−
∑

i 6=j

Vij (xi − xj)
2 (1)

The Lagrangian of Eq (1) shows that, at A > 0, within

the unit cell, the position xi = 0 corresponds to unstable
equilibrium, and this instability is stabilised by the quartic

(anharmonic) potential. Displacements xi and xj in differ-
ent unit cells are interacting with each other and, at Vij > 0,

displacements in the same direction correspond to a lower
energy.
Thermodynamic properties of the crystal are determined

by the Free energy F = −T lnZ, where partition function
Z(β), (β = 1/T ) is

Z =
∫

x(β)=x(0)

∏

i

D xi(τ) exp

[

−
∫ β

0
L̃dτ

]

, (2)

where

L̃ =
∑

i







m

2

(

∂xi
∂τ

)2

+
A

4

(

x2i − a2
)2







+
∑

i 6=j

Vij (xi−xj)
2. (3)

Eqs (2) and (3) contain the displacements xi(τ) (0 ≤ τ ≤ β)

as the functions of imaginary time t = iτ . If a Fourier
transform

x(τ) =
∑

n
xn e

iωnτ , ωn = 2πTn (4)
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is made, then the Eq (2) could be rewritten as an integral

∫

Dx(τ) =
+∞
∏

n=−∞

∫

d xn,

and the term with time derivatives in Eq (3) takes the form

∫ β

0
dτ

(

∂x

∂τ

)2

= T
+∞
∑

n=−∞
ω2
n|xn|

2.

If the temperature T is low, the sum over Matsubara fre-
quencies ωn can be replace by an integral over frequencies.

In the opposite case of high temperatures, only one Fourier
component xn with n = 0 is essential, and Eqs (2) and (3)

return us to Classical Statistical Mechanics. We will stick
to this Classical case in the rest of these lectures.

Two limited cases occur if/when the interaction Vij a
2 is

either smaller, or larger, than the scale A a4 of the potential

within the unit cell.

Order-disorder Type Transition.

If A a2 ≫ V , then two scales of temperature T∗ ∼ A a4

and TC ∼ J = 2 V a2 (T∗ ≫ TC) naturally occur. At
relatively high temperature T ≪ T∗, displacements xi in

each unit cell correspond to energy minimum at xi = ±a.
Under this condition, the energy E of the crystal is reduced

to that of the Ising model

E = E0 −
∑

i,j

Jij σi σj, σi =
xi
a

= ±1, Jij = 2 a2 Vij. (5)



4

Thermodynamics of Ising model is well-studied. The crys-

tal undergoes the second order phase transition: at T ≥
TC =

∑

j 6=iJij dynamical variables σi = ±1 are not or-

dered, i.e. 〈σi〉 = 0. At lower temperatures T < TC , a
spontaneous symmetry breaking s = 〈σi〉 6= 0 occurs1 .

Displacement Type Phase Transition.

If A a2 ≪ V , then the effective energy, associated with
displacements xi

E = E0 + E2 + E4, (6)

E2 =
A a2

2

∑

i

x2i +
∑

ij

Vij (xi − xj) , (7)

E4 =
A

4

∑

i

x4i . (8)

corresponds to weak anharmonism and E2 ≫ E4 at typical
values of displacements xi. Using the Fourier transform,

obtain

E = E0 +
∑

k

ω2(k)

2
|x(k)|2 +

γ

4

∑

k1,k2,k3,k4

x(k1)x(k2)x(k3)x(k4)δ(k1 + k2 + k3 + k4) .(9)

Harmonic part E2 of effective potential energy of oscillations
(9), at most of the values of quasi wave vectors k is larger,

1In contrast with Displacement Type Phase Transition, in crystals, undergoing
the Order-disorder Type Transition, even at T ≥ TC , when s = 〈σi〉 = 0, in every
unit cell, the atom in the “cage” is displaced from its center.
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than its anharmonic part E4. The frequency ω(k) is mall

only at very small values of k, where

ω2(k) = ω2(0) + s2 k2, k a≪ 1. (10)

The coefficient s has an usual order of magnitude s ∼ ωDa,
while ω2(0) is small and could be even negative. If ω2(0) =

−µ (ω2
D ≫ µ > 0), then, at T = 0, the crystal is unsta-

ble with respect to uniform displacements x(k = 0). At

finite temperature, effective frequency ω(k, T ) is a subject
of renormalisation due to anharmonic interaction. In the

leading approximation in small amplitude γ,

ω2(k, T ) = −µ+Σ(k, T ), Σ(k, T ) = 6 γ
∑

k

〈|x(k)|2〉T (11)

Using renormalised harmonic energy, obtain

G(k, T ) = 〈|x(k)|2〉T =
T

ω2(k, T )
, (12)

ω2(0) = −µ+ 6
γT

(2π)3

∫ dk

ω2(k)
. (13)

The integral in the right hand side of Eq (13) is determined

by large values of the quasi wave vectors k and, therefore,
in the leading approximation, does not depend on temper-

ature. Therefore, effective frequency ω(0) of soft phonons
obeys the Curie-Weiss law

ω2(0) =
T − Tc
C

, Tc = µ C. (14)

Therefore, the crystal is stable at T > Tc and loses stability
at T ≤ Tc

2.

2Since the amplitude γ of an anharmonic interaction is small, the Curie-weiss
constant C is large (C ≫ Tc)
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In view of the mentioned instability, at T < Tc, the

displacement xi must be viewed as a sum

xi = η + δxi, x(k) = ηδ(k) + δx(k) (15)

of the uniform displacement η and the local displacement
δxi. Analogously the Fourier image x(k) of a displacement

could be presented (as done in Eq (15)) as a sum. Omit-
ting the effect of thermal fluctuations of δx, obtain the free

energy F as

F = F0 +
T − Tc
2C

η2 +
γ

4
η4, (16)

This form of Free energy is called in literature Landau ex-

pansion and the uniform displacement η bear the name the
order paramenter.

F

T > Tc T = Tc

T < Tc

η

Figure 1: Free energy F in Landau Theory as a function of order pa-
rameter η
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2. Landau Theory of Type II Phase

Transitions.

Fig 1 presents dependence of Free energy F (η) on order
parameter η at different temperatures. At T > Tc, the free

energy has minimum at η = 0. At T < Tc, the state with
eta = 0 corresponds not to a minimum but to a maximum

of Free energy. Taking derivative in eta from the Landau
expansion (16), obtain the equilibrium value η(T ) and the

free energy at T < Tc

η(T ) = ±

√

√

√

√

Tc − T

γC
, F = F0 −

(Tc − T )2

4C2γ
. (17)

Eq (17) shows that not only free energy F is continuous at
T = Tc, but its derivative in temperature, the entropy, has
no jumps at the transition point. This means that there is

no hidden heat of the type II transition. As for specific heat
C(T ) = T (∂S/∂T ) = −T (∂2F/∂T 2) it has a jump and

C(T − 0) = C(T + 0) + ∆C, ∆C =
Tc

2C2γ
. (18)

We will see that this jump in specific heat is an artefact of
the mean field approximation, underlying Landau theory.

Fig 2 presents - schematically - dependence on temper-

ature T the order parameter η and the specific heat C in
frameworks of Landau theory.
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η

T T

C

TTc c

a b

Figure 2: Temperature dependences of the order parameter η and the
specific heat C in Landau Theory.

3. Landau Theory and Symmetry

Breaking

We consider here how the concepts of symmetry and sym-

metry breaking are linked with Landau theory of type II
phase transitions. Let, the symmetric phase (at high tem-

perature T ≥ Tc) has the symmetry group G. This means,
for instance, that the density ρ0(r) at high temperature
is invariant with respect to transformations ĝ ∈ G. This

means that ρ0(ĝr) = ρ0(r). At low temperature T ≤ Tc the
density has lower symmetry:

ρ(r) = ρ0(r) +
∑

α
ηαφα(r) , (19)

where summation in Eq (19) is conducted over irreducible
representations of the groupG (excluding the trivial - scalar

- representation ). The eigenvectors of representation Γα are
presented by the normalised functions φα(r). Free energy
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F at T > Tc is

F = F0 +
∑

α

aα
2
η2α, aα > 0. (20)

At T = Tc, one of rigidities aα vanishes (say, for α = 1).
Therefore, at T < Tc the rigidity a1 < 1, which makes
symmetric phase unstable with respect to developing the

deformation η1. In order to determine the amplitude of
above mentioned deformation, the free energy (20) must be

completed with higher power of η1

F = F0 +
a1
2
η21 +

c

3
η31 +

b

4
η41 + .. (21)

In case the coefficient c is not vanishing, transition from
η1 = 0 to η1 6= 0 occurs discontinuously (first order phase

transition). In order to find out whether c is finite, one
must consider symmetrised cube [Γ1 × [Γ1 × Γ1]] of repre-
sentation Γ1. If the expansion of this symmetrised cube

into sum of irreducible representations contains the scalar
Γ0, i.e. if

[Γ1 × [Γ1 × Γ1]] = Γ0 + ...,

then c 6= 0 and the transition is discontinuous. Otherwise,
c = 0.

The quartic term (or terms) determines similar splitting
of symmetrised fourth power [Γ1 × [Γ1 × [Γ1 × Γ1]]] of irre-
ducible representation Γ1. The symmetrised fourth power

always contains the scalar. At least, one, but, sometimes
several. If c = 0, b > 03, then we get a continuous (second

order) transition.

3Or, the quartic terms form a positively define polynomial
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LECTURE 2.

Mean Field Approximation

and Landau Theory

of type II Phase Transitions

PROBLEMS

P2.1. Bi-critical Point .

A system might undergo two phase transitions which lead to
appearance of either order parameter ψ or order parameter

φ. The free energy as the finction of two external parame-
ters τ and h has the following form

F = F0+
τ + h

2
ψ2+

τ − h

2
φ2+

β1
4
ψ4+

β2
4
φ4+

β3
4
ψ2φ2 (1)

Draw the phase diagram in plane (τ, h). How this phase

diagram depends on relation between β1, β2 and β3 ?

P2.2. Tricritical point

Landau expansion of free energy F in superfluid helium has
the following form

F = F0 +
α

2
(T − Tλ) |ψ|2 +

b

4
|ψ|4 +

c

6
|ψ|6, c > 0. (2)

11
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In the mixture of isotopes 3Hex
4He1−x both Tλ and the

coefficient b depend on concentration x. The dashed line in
Fig 1 shows how the critical temperature Tλ(x) decreases

with increase of concentration x of isotope 3He. The dot-
ted line in the same figure shows the temperature T and
concentration x at which b(x, T ) = 0. Above dotted line

b(x, T ) > 0, and below dotted line b(x, T ) < 0. Analyse
stability of superfluid and normal phases in such a mixture

and finish the drawing the phase diagram1.

1The point at the phase diagram determined by two conditions T = Tλ(x) and
b(x, T ) = 0 is called Tricritical point

0 1

He4 He3

T

b(T,x) = 0

T (x)λ

Figure 1: Phase diagram of the mixture 3He
x

4He1−x
of the isotopes

of liquid helium in variables (x, T ).
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P2.3. Cubic Ferromagnet

A ferromagnet in a crystal with cubic symmetry in presence
of external magnetic field H. Landau expansion of Gibbs

free energy G in Magnetisation M

G = G0 +
T − Tc
2C

M2 +
b

4

(

M2
)2

+

b1
4

(

M4
x +M4

y +M4
z

)

−
H ·M

4π
+

H2

8π
(3)

• Find dependence of the componentsMx,My andMz of

magnetisation on temperature T atH = 0 for different
values of the coefficients b and b1.

• For b > 0 and b1 > 0, find temperature dpendences of
the tensor of magnetic sucsessibility

χαβ =





∂2G

∂Hα∂Hβ





H→0

Pay attention to the difference in structure of the ten-

sor χαβ at T > Tc and at T < Tc.

• For given modulus of magnetic field |H|, find depen-
dence the modulus of magnetisation |M| on direction
of magnetic field.

P2.4. Isolated Critical Point

• P2.4.A.

Landau expansion of free energy F in order parameter

η has the following form

F = F0 +
τ − h

2
η2 +

τ + h

3
η3 +

b

4
η4 , (4)
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where τ and h are two thermodynamical parameters

(for example, the temperature and the pressure). Draw
the phase diagram in (τ, h) plane.

• P2.4.B. Nematic Liquid Crytal

Nematic Liquid crystal is characterised by the order
parameterQαβ, tr Q̂ = 0, which determines the anysotropic

part of dielectric constant

ǫαβ = ǫ0 δαβ +Qαβ

A liquid solution is characterised by the temperature

T and concentration c of a solvant. Canonically con-
jugaed to concentration c is the chemical potential µ

of the solvant. There is an isolated point (Ti, µi) in
the plane of thermodynamic variables (T, µ), at which

the transition from isotropic liquid to a liquid crystal
is the type II phase transiion. Near such a point - at
variables T = Ti+τ, µ = µi+ν - the landau expansion

for the grand canonical potential Ω has the following
form

Ω = Ω0 +
τ − ν

2
Qαβ Qβα +

τ + ν

3
Qαβ Qβγ Qγα +

b

4
(Qαβ Qβα)

2 +
b1
4
Qαβ Qβγ Qγδ Qδα (5)

– Using the substitution

Qαβ = q

(

nαnβ −
δαβ
3

)

+ q r

(

mαmβ −
δαβ
3

)

n2 = m2 = 1 n ·m = 0, 0 ≤ r ≤ 1 (6)
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draw the phase diagram in plane of variables τ and

ν, indicating the phases with q = 0, q 6= 0, r = 0
and q 6= 0, r 6= 02 .

– Draw the phase diagram in the plane of tempera-

ture T and solvant’s concentration c.

2Parameter q determines anysotropy. In case r = 0, the anysotropy of dielectric
constant ǫ̂ is uniaxial. In case r = 1, the of dielectric constant ǫ̂ is uniaxial as
well (Inroduction of the vector l = [n×m] allows to show that at r = 1, Qαβ =
−q (lα lβ − δαβ/3)). The case 0 < r < 1 correspond to two-axial anysotropy of
dielectric constant ǫ̂.


