
LECTURE 1.

Phases and Phase Transitions.

Symmetries and Symmetry

Breaking.

1. In this course, we deal with Statistical Mechanics of con-
densed substances. Free energy G̃(T, p, N, v) of any system

of N constituting particles at temperature T under pressure
p has a minimum as a function of any other parameter, say

a volume v = V/N per particle. Therefore,





∂G̃

∂v





p,T

= 0 (1)

When solution of Eq (1) v = v(T, p) is substituted in the

function G̃(T, p, N, v), we obtain the free energy at equilib-
rium

G̃(T, p, N, v(T, p)) = N g(T, p), (2)

where g(T, p) denotes the density of free energy. Condition

(1) means only that the solution v = v(T, p) corresponds
to the stationary point. Conditions of minimum are com-
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plimentary and have the following form

∂2g

∂p2
< 0,

∂2g

∂T 2
< 0,

∂2g

∂p2
· ∂

2g

∂T 2
−




∂2g

∂p∂T





2

< 0. (3)

A system at a stable equilibrium is called the phase. An
interesting thing occurs when Eq (1) has not one but sev-

eral - say two - solutions for volumes v1(p, T ) and v2(p, T )
with the free energies g1(p, T ) and g2(p, T ) respectively. We

have now two phases. Each of them is stable with respect
to small variation of internal parameters. Still, the free en-

ergy of one of the phases is larger, then that of the other.
Therefore, the phase with the larger free energy is unstable

if it could be transformed into the phase with lower free
energy by a strong variation of internal parameters.

2. Thus, the free energy G̃(T, p, N, v) as the function
of volume v has two minima at v1(p, T ) and at v2(p, T ) >
v1(p, T ). There is, at least, one maximum at vm(p, T ) (

v2(p, T ) > vm(p, T ) > v1(p, T ) , see Fig 1). Let assume that
Eq (1) has a polynomial character

(v − v1)(v − vm)(v − v2) = 0

In this case, the Gibbs free energy has following form

G̃ =
v4

4
− v1 + v2 + vm

3
v3 +

+
v1v2 + v1vm + v2vm

2
v2 + v1v2vmv (4)

When the temperature T and the pressure p vary, the
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Figure 1: Gibbs Free energy G as a function of the volume v.

difference of the values of free energy G̃ at the volumes v1
and v2 may change its sign, being equal at T∗(p). This
corresponds to equilibrium of two phases 1 and 2 - phase

p

G
~

− p0

Figure 2: Gibbs Free energy G̃ as a function of the pressure difference
p− p0.
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transition. At the phase transition

vm =
v1 + v2

2

If v2(p, T ) > vm(p, T ) > v1(p, T ), the values v1 and v2 of the
volume correspond to minima of the Gibbs free energy G̃.

If v1(p, T
(1)
s (p)) = vm((p, T

(1)
s (p)), then G̃ has no minimum

at v = v1. Analogously, if v2(p, T
(2)
s (p)) = vm((p, T

(2)
s (p)),

then G̃ has no minimum at v = v2. Two lines T (1)
s (p) and

T (2)
s (p) correspond to the boundaries of stabilities of the

phases 1 and 2 respectively. The graph of Gibbs free en-
ergy at given value of the pressure p is shown in Fig 2.

3. With variation of the pressure, all solutions v1, v2
and vm vary. They could get equal at p = pc and T = Tc =

T∗(pc), which corresponds to the critical point. At critical
point T (1)

s (pc) = T (2)
s (pc) = Tc. The phase diagram in the

(p, T ) plane is shown in Fig 3. Since at the line of phase
equilibrium

g1(p, T ) = g2(p, T ),

variation of both the pressure p and the temperature T

along this line gives

(

∂g1
∂T

)

p
d T +

(

∂g1
∂p

)

T

d p =

(

∂g2
∂T

)

p
d T +

(

∂g2
∂p

)

T

d p (5)

Since
(

∂g1,2
∂T

)

p
= −S1,2,

(

∂g1,2
∂p

)

T

= v1,2,
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Figure 3: The phase diagram in T, p plane. Solid line T∗(p) corresponds
to the first order phase transition, when the phases 1 and 2 are at
equilibrium, the dashed lines T (1)

s
(p) and T (2)

s
(p) corresponds to borders

of stability for phases 1 and 2 respectively. All three lines meet at the
critical point.

Eq (5) leads to the following equation (Clapeyron-Clausius

equation) for line of equilibrium

(

∂p

∂T

)

eqv
=

q

T (v2 − v1)
, (6)

where S1,2 denote the entropies per particle in the phases

1 and 2, q is the latent heat and v2 − v1 is the volume
difference.

4. Introducing reduced variables

τ = T − Tc, π = p− pc, φ = v − vc ,

one could re-write the Gibbs free energy - up to arbitrary
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coefficients - in the van der Waals form:

G̃ = −π φ+ a τ φ+
τ

2
φ2 +

φ4

4
, (7)

At τ ≥ 0, the condition of equilibrium ∂G̃/∂φ = 0 has
only one solution φ(τ, π). The conditions of stability are

automatically fulfilled under these conditions. At τ < 0,
the condition of equilibrium has three solutions. Minima of

the free energy G̃ correspond to

φ± = ±
√

|τ | (8)

and the line of phase transition - to

π∗ = a τ, τ < 0+ (9)

Eqs (7-9) allow to calculate the entropy discontinuity at the
transition ∆S and the latent heat q:

q ∝
√

|τ | (10)

Close to critical point, the specific heat Cp is

Cp ∝
1

τ + φ2
(11)

In particular, at the transition point

Cp ∝
1

√

|τ |
(12)

Boundaries of stabilities are given by equations

π(1,2)
s = −a |τ | ± 2

√
3

9
|τ |3/2, τ < 0 (13)
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5. So far, both phases 1 and 2 were characterised by

the same internal variable v and, therefore, had the same
symmetry. This is why it is possible at τ > 0 to have

a continuous transition between different states of matter.
A good example of such a situation is presented by a liq-
uid/gas system. If the temperature and pressure are large

enough, a continues transition from a dense gas into a liquid
is possible1.

The mentioned situation is not generic. If a liquid is
formed by anisotropic molecules, a transition is possible be-

tween the phase of isotropic liquid, when orientation of the
molecules is random, into a nematic liquid crystal, when an

axes of anisotropy are oriented along a unit vector n (n2 =
1). Such a transition brings an example of a symmetry
breaking. Obviously, the transition line at the phase dia-

gram cannot have an ending point, because, otherwise it is
possible to pass around such a point and acquire different

symmetry by the means of a continuous process.

As it had been mentioned, the phase of nematic liquid

crystal is characterised by the axis of director n.2 As an
example, the anisotropy of dielectric tensor ǫαβ is

ǫαβ = ǫ0 δαβ + ǫa

(

nα nβ −
δαβs

3

)

(14)

All possible states of the system with broken symmetry is
characterised by the space of degeneracy. Space of degen-

eracy RN of a nematic liquid crystal is the real projective

1There are many other examples. For instance, a phase separation in solutions.
2An important caveat is that that states characterised by directors, meaning

that n and −n correspond to an identical state.
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plane RP1 = S2/Z2. The last notation means that differ-

ent states of nematic liquid crystals are characterised by a
point at the surface of 2D sphere, identifying the opposite

points. The structure of the space of degeneracy allows to
classify the defects of the liquid crystals. We return to this
in Appendix 1.

6. The symmetry of a phase is determined its proper-

ties. For instance, a ferromagnet is characterised by a cer-
tain spontaneous magnetisation M. The operation of time

inversion T̂ : t → −t leads to transformation M → −M.
Therefore, the phase of a ferromagnet is characterised by

the breaking of the time inversion symmetry T̂ . This leads
to a number of other properties of a ferromagnet. For in-
stance, the dielectric permeability ǫαβ(ω) at a finite fre-

quency ω of a ferromagnet has the following form

ǫαβ = ǫ0 δαβ + i g eαβγMγ, (15)

i.e. demonstrate the Faraday effect, rotation of polarisation

plane. The form (15) obeys the condition

ǫαβ(M) = ǫ∗αβ(−M) (16)

imposed by the time inversion symmetry.
The other examples of special properties imposed by the

symmetry breaking could be found in problems to this lec-
ture.

7. In the presence of external forces, the internal param-
eter, which characterises the phase with a broken symmetry
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might depend on space coordinates r. As an example, a ne-

matic liquid crystal in inhomogeneous electric field E(r)
is characterised by director n(r) dependent on coordinates

r3. This leads us to the conclusion that the free energy
of heterogenous nematic liquid crystal G is presented as a
functional of the director n(r) as a function of coordinates4

G = G0 +
1

2

∫

dr K1 (div n)2 +

1

2

∫

dr
{

K2 (n · curl n)2 +K3 (n× curl n)2
}

+

ǫa
12π

∫

dr (n E)2 (17)

Here G0 presents the free energy in case, when the direc-
tor n is space homogeneous and electric field E vanishes.

Independence of the free free energy on direction of n - in-
dependence at all the ponts of the space of degeneracyRN -

expresses the fact of the symmetry breaking. The low sym-
metry phase of a nematic liquid crystal presents an example
of spontaneous breaking of continuous symmetry, which is

characterised by director n. In all cases of the breaking of
continuous symmetry, the free energy of a heterogeneous

depends on gradients of internal parameter (director n in
the case of nematic liquid crystal). This fact - well known

3This dependence occurs because, due to anisotropy of dielectric properties (12),
the free energy density acquires an etra term

δg = ǫa
(n E)2

12π

4In the theory of liquid crystals, this functional is called the Oseen-Frank

functional
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yet in 19th century - is often called in the literature Gold-

stone theorem. Three coefficientsK1, K2 and K3 in Eq (17)
are called the Frank moduli. They parametrise the rigidity

of a homogeneous state of nematic liquid crystal with re-
spect to deformations of different kind.

8. Let us return to arguments of the Sections 2 and
3. We have seen that, in case when the both phases cor-
respond to the same symmetry, the phase diagram takes

the shape presented in Fig 3 (with a critical point). In
case, when two phases correspond different - higher and

lower - symmetries, the critical point cannot appear. The
phase diagram, in this case, has, for instance the shape, pre-

sented in Fig 4a. The solid line at this figure corresponds
to equality of free energies - first order phase transition -
and two dashed lines mark the boundaries of stability for

two phases. An alternative to this case is brought by Fig

a b c

T

Figure 4: Phase diagrams for cases of First order phase transition (a),
Second order phase transition (b) and the transition with a three-critical
point T , i.e. being of the first and the second order at the different part
of the diagram. The solid line corresponds to the first order transition,
the dashed lines corresponds to the boundaries of stability and the
second order transitions.
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Figure 5: Dependence of Magnetisation |M| on temperature T for case
of First order phase transition (a), Second order phase transition (b)
and the phase diagram with a three-critical point (c). For the case c,
dependence of |M(T )| is given for three different point at the line of
transion.

4b, when the boundaries of stability for symmetric and non-
symmetric phases coincide. This corresponds to the Second

order phase transition. The Fig 4c presents the phase dia-
gram for a transition, which is the First order at the part

of the phase diagram and the Second order - at the other.
For an example of above mentioned phase transition

from a paramagnetic to a Ferromagnetic phase, dependence
of spontaneous magnetisation |M| and a parameter across

the transition line (say, the temperature T ) for phase dia-
grams 4a, 4b and 4c are shown in Fig 5.
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LECTURE 1.

Phases and Phase Transitions.

Symmetries and Symmetry

Breaking

PROBLEMS

P1.1. Saturating Vapour at Low Temperature

Find dependence of the pressure of the Saturating Vapour
(i.e. the vapour at a thermal equilibrium with the liquid)

on temperature T at low temperature, when the equation
of state for the vapor is

p v = RT, (1)

where R is universal gaseous constant. The volume vL of
the liquid could be neglected in comparison with the volume

of vapour vV .

P1.2. Tripple Point

The tripple point T at the (p−T ) phase diagram (see Fig)

iis the point at which the phase boundaries SL, SG and
LG meet of the gaseous G, solid S and liquid L phases.

13
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Figure 1: Phase Diagram with Gaseous G, Liquid L and Solid S phases.
The dashed line corresponds to continuation of the SG phase boundary
beyond the tripple point.

Show that continuation of SG phase boundary lies withing
the corner formed by the phase boundaries SL and LG.

P1.3. Spaces of Degeneracy Analyse the following

examples of the symmetry breaking and find relevant spaces
of degeneracy.

• P1.3.A. Crystal

• P1.3.B. Low-temperature phase of a Bose gas or

Bose liquid, characterised by the macroscopic

wave function of the condensate

• P1.3.C. Cholesteric Liquid Chrystal

A cholesteric liquid is characterised by a director n,
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which changes periodically - with a fixed period - in

space.

P1.4. Properties of phases with a low symmetry

• Piezo-electricity

Show that a crystal of the symmetry class Td demon-

strates piezo-electricity, i.e. a deformation

uαβ =
1

2





∂uα

∂rβ
+

∂uβ

∂rα





leads to polarisation E :

Pα = dβγα uβγ

Hint. Piezo-electricity corresponds to an extra-term in
free energy

FP = dβγα Pα uβγ

Find permitted components of the tensor d̂.

P1.5. Effective Free Energy Consider inhomoge-

neous states of different phases with the symmetry breaking
and find out free energy functionals for these phases.

• P1.5.A. Isotropic solid

Hint In an isotropic solid, the density could depend on

coordinates ρ(r). A heterogeneous state has the den-
sity ρ(r) = ρ0(r + u(r)). Due to translational invari-

ance, the free energy F depends not on a displacement
u(r), but rather on its derivatives ∂uα/∂rβ
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• P1.5.B. A crystal with cubic symmetry

• P1.5.C. Smectic

Hint Smectic is a substance, in which the density ρ(r)

depends, say periodically, on one of three coordinates:
ρ(r) = ρ(z). Under this condition, the heterogeneous
state has the density ρ (z + u(r)). Due to translational

invariance, the free energy F depends not on u(r), but
rather on its derivatives. If ∂u/∂r‖ = const, this cor-

responds to the axes x, y and z being tilted to the
layers of the smectic under certain angle. Therefore,

the free energy F depends not on ∂u/∂r‖, but rather
on ∂2u/∂r2‖.


