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In the elastically isotropic model of a solid body, allowance for compressib~lity ~nd for. interaction 
with acoustic phonons leads to a first order phase transition in those cases ~n. wh1ch, w1thout allow~ 
ance for acoustic effects, the heat capacity becomes infinite. Near the trans1hon, the thermodynamic 
derivatives remain finite but have an anomalous dependence on temperature. 

1. INTRODUCTION 

IN many cases, phase transitions in solid bodies are 
transitions of first order but nearly of the second. The 
nearness cannot be accidental; it is due to the fact that 
near a second-order transition point, the lattice be­
comes unstable. It was RiceC11 who first called atten­
tion to this instability (see also[2 J ). He noted that in 
case the heat capacity at constant volume becomes in­
finite at some temperature dependent on the density, 
then in the vicinity of the transition temperature apjav 
is proportional to the heat capacity and is positive. 
Consequently, the singular point lies in a region of ab­
solute instability, and the transition must be of first 
order. 

However, the assumption that the heat capacity at 
constant volume becomes infinite is incorrect. This is 
because allowance for motion of the centers of the cells 
leads to additional interaction by exchange of acoustic 
phonons[ 3• 4 l. This interaction has a singularity at small 
momentum and therefore influences the character of 
the transition. Thus FisherC 5 l supposed that in a lattice 
that is being compressed, Cy is finite and it is the 
heat capacity Cp that becomes inf~n.ite, an~ the transi­
tion remains a second order trans1hon. It 1s shown be­
low for the case of an elastically isotropic model, that 
this' assumption is justified only in the unreal case of 
a vanishing compression modulus. With a non vanishing 
compression modulus, a first-order transition occurs. 
The temperature dependence of the heat capacity, the 
spontaneous moment, the compressibility, and the 
susceptibility is found. Near the transition these quan­
tities remain finite, but under small strain they change 
appreciably within a narrow temperature range. 

2. THE HAMILTONIAN WITH ALLOWANCE FOR 
ACOUSTIC PHONONS 

In each cell of the crystal, it is possible to choose 
a certain generalized coordinate 1Jb whose mean value 
is a parameter of order 11. For example, in ferroelec­
trics 1Ji is proportional to the distance of the central 
atom from the center of the cell; in quartz, to the dif­
ference between the distances of neighboring oxygen 
atoms from the axis. Without allowance for acoustic 
oscillations, in the "clamped" case (zero deformation), 
the simplest form of Hamiltonian of the system has the 
form 
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ll= s( -al]i2+: bl)•')+] l';;(t)i-11;) 2. (1) 
i lJ 

When the parameters a and b are small, the Hamil­
tonian (1) corresponds to transitions of the displace­
ment type; when they are large, to transitions of the 
order-disorder type. Thus if a= b >> T, the important 
values of 1Ji are those near ± 1, and the Hamiltonian 
(1) differs little[ 3 J from the Hamiltonian of the Ising 
model. 

It is assumed below that the system described by 
the Hamiltonian (1) has, at a certain temperature T(;, 
a second-order transition point with an infinite heat 
capacity. Near Tc the free energy depends only on the 
difference T - Tc: 

(2) 

For T - Tc the function f evidently has, just as in 
. A I To 12- 0! ~ lf the Ismg model, the form T - c , a ~ ;a. 

There is also possible a behavior of the form 
-A(T - Tc)2 In IT - T~ 1. If the parameters of the 
Hamiltonian (1) are such that there is a region of ap­
plicability of the self-consistent field approximation, 
then in this region the singular part of the free energy 
is proportional to I T - Tc 1312 • 

With allowance for interaction with long-wave 
acoustic phonons, which are described by a vector field 
ua ( r ), the Hamiltonian of an elastically isotropic solid 
body can be written in the form 

{( 1 1 )(0Ua)2 (0Ua) 2 
H= _2; -Ko--fl. - +!!-

2 3 ora or~ 
i 

+(-a-qOUa)Tii'+-21 bl);'+ ~ V,;(TJ;--l);)'}. (3) 
ora . ; 

Here K0 and 11 are the nonsingular parts of the bulk 
and shear moduli. 

3. THE GffiBS THERMODYNAMIC POTENTIAL 

The Gibbs thermodynamic potential is determined 
by the formula 

<IJ = -Tln ~ dl];dtLa(r)exp {- ~ [ H- <Ja~ ~ [m~;:)]} · 
l 

(4) 

(Here and hereafter, the product sign with respect to i, 
a, and f3 is omitted.) We separate out the uniform­
deformation tensor ua!'l: 

oua(r) 1 "" k ("k) --= Ua~ +- LJ ik~ua ( ) exp 1 r , 
or~ N k""o 

(5) 
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where N is the number of cells in unit volume. On 
substituting (3) and (5) into formula (4 ), we get 

Ill = - T ln l du~~ dT]; du~ (k) exp {- - 1- ~ [ ~ KQUaa2 

NTk+O 2 

+ f.l(lla~- 1/all~pu'\1'1') 2 - a~pu~~a + (1/,Ko + 2/sf.l) I kaua(k) 12 

+ f.1(k2 lua(k) I' -!k"u~(k) j2)- ~ (a+ qllaa + qik~ua(k)eikr;)1'];2 
i 

+ ~ ~ bT]z4 + ~. V;;('l;-1'];) 2]}· (6) 
' ., 

We calculate the Gaussian integrals over ua(k) and 
over the shear part of the tensor uaf3· The result is 

<I>= ll>o +__!_ (a~p + p6~~) 2 - Tln ~ duaad'l; exp{- ~[ ~KoUa~' 
21-1 · T 2 

+ pu= + ~ V;;(T];- 1'];) 2 - L; (a+ qu~~)1'];2 + ; b L; '1•' 
ij i i 

- ZN (3;q: 4 ) L; ~ 1'];2'1;" exp ( ik(r;- r;)) ]}. 
O Jl k=;i=O ij 

(7) 

Here <I>a is a smooth function of temperature, and the 
pressure p =-Ya<Yaa· The dependence of <I> on the 
shearing stress is described by the second term of 
formula (7 ), which, in the model being considered, has 
no singularity, and which will hereafter be included in 
<I>a. The last term in formula (7) acquires the same 
form as the next-to-last if we add to it a term 

- (1/2N)q2 (Ko + '/af.l)-1 (L: 'lz2 r. 
i 

For this purpose, we make in the integral over uaa 
the substitution 

Uaa = :-.. v 3Ko4: 41-1 + ;u ( 1 - v 3Ko4~ 41-1 ) ~ 1'];'-:. ' (8) 
z 

whereupon the expression (7) takes the form 

II>=Il>o-£-Tln )avdl'];exp{-__!_[ 1 3Ko+ 4f.l v2 
2Ko T 2 4f.1Ko 

~ ( v- p) 2 + 1 (b 3q2 
) ~ ' 

+ ~ a+q-~ 1']; 2 3Ko+4f.l ~ 11 ' 

+ L; V;;('l;-'1;)']}. 
ij 

(9) 

The integral over 7Ji differs from the corresponding 
integral in formula (2) only by redefinition of the con­
stants a and b. The integration over v can be carried 
out with statistical exactness by the method of steepest 
descents. As a result, we get the expression for <I> in 
parametric form 

all> I av = o. 

b - --:::-......:"-q2.,-;-- ) 

Ko+'lsf.l ' 

(10) 
(11) 

When the shear modulus 1J. vanishes (as, for example, 
in the one-dimensional case), it follows from equation 
(11) that v = 0; then the thermodynamic potential <I> 
differs only by a change of parameters from the free 
energy F found without allowance for acoustic motion. 
When 1J. "' 0, the character of the transition changes. 

The nonsingular part of F will lead to some change 
of the first three terms in formula (10) and will be 
disregarded below. In the singular part, what is of 
greatest importance is the dependence of Tc on the 
parameter a, and therefore the singular part of F is 

determined by formula (2 ), in which Tc varies 
smoothly with the parameter v. On introducing instead 
of v the new parameter 

1 { T- Tc0 q aT c0 } x=- -------(p-v) , 
Tc0 Tc° K0 iJa 

we find the dependence of <I> on T in parametric form, 

p2 [ 1 ( T - T c0 - cp )'] ll>=ll>o--+Tc0 -j(x)+- x , 
2Ko 2A. Tc0 

(12) 

where 
aci>jax = 0, 

As will be shown below, the constant c is equal to 
the derivative of the transition temperature with re­
spect to pressure. 

The expression (12) can be rewritten in the form 

2 [ A, ] W=IP0 -:K
0
+Tc0 -j(x)+2(f'(x)) 2 , 

T- Tc0 - cp ( ) 
Tc• =x-A.j'(x). 13 

If the heat capacity of the system without allowance 
for acoustic phonons becomes infinite, then f" in­
creases at small x. In this case it follows from the 
second equation of (13) that T is a nonmonotonic func­
tion of x. Therefore x and consequently <I> are non­
unique functions of T. The potential <I> as a function of 
T is shown in the figure. The singular point of <I>, 

corresponding to x = 0, is in the region of absolute in­
stability. The temperature of the first-order transi­
tion is found as the point of intersection of the two 
branches of the thermodynamic potential and is deter­
mined from the system of equations 

T(x_) = T(x+), Cl>(x-) = <l>(x+). (14) 

Since x+ and x_ are independent of p, the constant c 
in (13) is equal to the derivative of the first-order 
transition temperature with respect to pressure. If the 
singular part of the potential <I> is symmetric with re­
spect to the transition point, then X- = -x+, and the 
temperature of the first-order transition is 

Tc = Tc0 + cp. (15) 

4. THERMODYNAMIC DERIVATIVES 

On differentiating the thermodynamic potential with 
respect to temperature, pressure, and the external 
field h, we get for the thermodynamic quantities the 
expressions 
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S=So+f'(x), 

p 
dV=- Ko +cf(x), 

(8V) c f'(x) 
aT p =Ta1-Aj"(x)' 

C _ C 0 f"(x) ( 8p) _ cK0 f"(x) 
'V- v + 1+!c(3K0/4f.l)f"(x)' iiT v- Ta 1+!c(3Ko/4~)f"(x)' 

_ 8$(1) _ T 8/(x) __ 821P(T) = T [B'f(x)_+ A(8/'(x)/8h) 2] 

Bh -a Bh' 8h2 a 8h' f.-A/"(x) 

(16) 
In these formulas, the parameter x must be expressed 
in terms of T by means of the second equation (13). 

In a state of thermodynamic equilibrium, the permis­
sible values of x are determined by the inequalities 
x 2: x+ and x::; x_ above and below, respectively, the 
point of the first-order phase transition. The meta­
stable region is contained in the temperature interval 
T(x+), T(X:.), where x_ and x+ are found, in accord­
ance with (16 ), from the equation 

1 - A/" (x) = 0. (17) 

The maximum extent of the temperature hysteresis is 

(18) 

It is clear from formulas (16) that all the thermody­
namic quantities remain finite at the transition point. 
But the heat capacity Cp, the hydrostatic compressi­
bility coefficient 1/K, and the coefficient of thermal 
expansion (8V/8T)p may be anomalously large in the 
vicinity of TC, if the values of f" (X±) and of f" (X±) 
are close to each other. 

5. THE CASE OF A LOGARITHMIC BEHAVIOR OF THE 
HEAT CAPACITY 

We shall consider in more detail the case in which, 
without allowance for acoustic motion, the heat capacity 
increases logarithmically, while the spontaneous mo­
ment and the susceptibility vary with temperature ac­
cording to a power law. Then 

f"(x)= -Alnlxl, 
flf 
-=BixiP9(-x), 
ah 

6(x)= {~ x>O 
x<O. 

The parameter x, in accordance with (13), is found 
from the equation 

(19) 

T-Ta lxtl (20) --=-Alexin-= , 
Ta x 

where X± and also the values of X± and oT are given 
by 

X+ = -X- = exp ( 1 - 1/ AA), 
x+ = -x- = exp (-1/ AA), 

6T = 2AA:i+T c. 
(21) 

In two limiting cases, we get from (20) an explicit form 
for the function x(T): 

!
T-Tc 

~· 
x(T)~ 21 T-T I 

x+ exp ( e{)T c )sign (T- Tc), 

In Tc ~_!_ 
IT-Tel AA (22 ) 

IT-Tci~6T. 

On substituting (19) into (16 ), we get 

S =So +Ax(1-1nlxi); 

aV =-:. + cAx(1-1nlxi), 

( 8V) 1 ( 1 3 ) AA In I xI 
8T P=--;;- Ko+4fl 1+A!clnlxl' 

1 1 ( 1 3 ) C p0 AA In I X I 
Kad =x;- k-;;-+4;-- C";1+AAinlxl 

Alnlxl 
Cv=Cv•---. , 

1- AA(3Ko/4f.L)In lxl 

( 8p ) 1 ( 3Ko) A In I xI 
fiT v =---;;- 1 + ""4; 1-AA(3Ko/4f.l)lnlxl ' 

_BID(T) ={BTa(-x)P, x<O; 
oh 0 , x> 0; 

o'<D (T) {B Tc (- x)-v + TcAP.'B' (- x)l~-l x < 0; (2 3) 
-~ = - I' 1 +AAlnlxl' 

B+Tcx-v, x>O. 

In the temperature range IT - Tc I » oT' X in 
formulas (23) can be replaced, with logarithmic accu­
racy, by (T- Tc)/Tc. Then if A"A ln I Tc/(T- Tc) I 
« 1, the singular parts of the heat capacities Cp and 
Cy and of the coefficient of thermal expansion are 
proportional to ln I Tc/ (T - Tc) 1. The susceptibility 
and the spontaneous moment in this temperature range 
behave the same as in a phase transition of the second 
kind, 

When "AA ln I Tc ( T - Tc) I approaches unity, the 
thermodynamic derivatives Cp and (8V/8T)p in­
crease faster, according to the law 

(In IT~c1al )/[ 1-AAin IT~aTal J. 
This law ceases to be obeyed in the temperature 

range ·I T - Tc I ~ oT. At the transition point T = Tc' 
the quantities Cp, (avjaT)p, 1/K, and 1/Kad take the 
large but finite values 

c _ c 0 _1 ( av) Ta ( 1 3 )' 
P - P + AA2 ' aT p = Ac" K0 + 4Jl ' 

~=_!__+~(~+~)' - 1 =_!_+.!..(~+~)___!!_L_. (24) 
K Ko AA Ko 4f.l Kad Ko AA Ko 4Jl Cp(Ta) 

The jumps in entropy and in volume at the first­
order phase transition are 

e 6T 6T 
68 =2J:2Ar;= e[Cp(1'a)-Cp0]Tc, 

ec 61' ( 8V) / 6V=----=e- 61. 
2A2A Ta 8T 'P T~Ta 

Here e is the base of natural logarithms. 

(25) 

A physical consequence of the general loss of sta­
bility of the system in the neighborhood of the first­
order phase transition is the presence of a temperature 
interval, near Tc, in which Poisson's ratio 
a= (3K- 2JJ.)/2(3K + JJ.) becomes negative. At these 
temperatures, any unidirectional tension causes a 
hydrostatic expansion of the material. The isothermal 
Poisson's ratio is 

2(3K0 - 2f.l)- 9KoAA lnlxl 
0 = 4(3K0 + f.L) + 9KoAA ln l:tl · 

(26) 

A necessary condition for the existence of a negative 
a is the inequality 

M < (3Ko + 4f.l) /9Ko. (27) 
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It is seen from (26) that a(Tc) ;o0 -1 for finite AA. The 
temperature interval in which a s 0 is determined by 
the inequality 

I I 3K0 + 4[1 - 9AAKo T 3Ko + 411 
T- Tc ~ 18AAK0 b exp 9AAKo (28) 

and may be much larger than the extent of temperature 
hysteresis 6T. 

The thermal coefficient of pressure at the transition 
point has no jump and is given by 

( aT) iJTc [ 4AAf1 1 (29) 
iJp v = ap i+(1-/.A)(3Ko+4f1J . 

At small AA this differs little from the rate of 
change of TC with pressure along the curve of phase 
equilibrium. At the boundary of the metastable region, 
(BT/Bp)v = BTc/ap. 

6. GENERALIZATION OF THE MODEL; THE ISING 
MODEL 

The model considered above, described by the 
Hamiltonians (1) and (3 ), is convenient because it en­
ables us to obtain the quantitative results (16) with only 
a single assumption. It was assumed that the heat 
capacity corresponding to the Hamiltonian (1) becomes 
infinite. Such a model describes well transitions of the 
displacement type rs, 71, in which the departures of the 
atoms from an equilibrium position are small and it is 
possible to limit consideration to anharmonic terms of 
the simplest form. In this case the interaction by ex­
change of acoustic phonons has the same form as the 
direct interaction. In transitions of the order-disorder 
type, the dependence of the energy of one cell on the 
coordinate 1Ji is described by some function U(1Ji) with 
two minima. Mter elimination of the acoustic phonons, 
the form of this function changes somewhat. On the 
assumption that without allowance for acoustic phonons 
the heat capacity becomes infinite according to a law 
that does not depend on the specific form of the function 
U(1Ji), we obtain formulas (12) in this case also. 

In the case of the Ising model, the Hamiltonian can 
be written in the form 

] {( _!_Ko _ ..':. )( iJna)\ [1( ~lla)'+ ( 1 + q ~u"-) V;;a;a;}. 
ij ' 2 3 I iJr~ . or~ ora 

Mter elimination of the acoustic phonons we obtain, 
analogously to formula (7), 

!I>= -TIn~ duaa Sp exp{- / [ ] (1 + quaa) V;;a;a; 
ij 

+ ~ Kouaa'+] W;;zmV;;a;a;Vzm<1t<1m + 2 (K .::/,f.L)N( ~ V;;a;a;)"]} · 

lm '' (30) 

The function Wijlm decreases rapidly with increase of 
the distance i-1 and is determined by the contribution 
from short-wave phonons. On repeating almost without 
change the derivation of (8) and (9 ), we obtain formulas 
(12) in this case also. We remark that the very fact of 
a first-order transition in the elastically isotropic 
model considered follows from the assumption that the 
heat capacity becomes infinite even in the presence of 
four-cell interaction. It seems to us reasonable that 
addition of a third term should not change the form of 
the singularity in the heat capacity. In this case the 
function f(x) is universal, and formulas (23) are correct 
at small strain. 

7. TRANSITION IN BINARY ALLOYS 

The Ising lattice in a longitudinal magnetic field is 
a model of phase transitions in binary alloys, in which 
a change of symmetry is connected with a change of the 
order of the crystal[ 8• 31. In such a system, there oc­
curs a phase transition of "antiferromagnetic" type; 
the case of equal numbers of atoms of different sorts 
corresponds to the absence of a magnetic field. 

In this case the results obtained above are unchanged. 
If the concentration differs from the stoichiometric, 
then it is convenient to introduce, instead of the con­
centration difference n, the chemical potential, which 
is equivalent to an external magnetic field h in the 
Ising lattice. We shall assume, in conformity with the 
results of numerical calculations raJ, that the magnetic 
field has no influence on the nature of the antiferro­
magnetic transition but only diminishes the transition 
temperature. It is therefore reasonable to assume that 
at constant h, the thermodynamic potential with allow­
ance for acoustic phonons, in accordance with (12), has 
the form 

, Tc"( T-Tc0 -cp 
-t- 2i" x - T c0 

iJQ/iJx = 0. (31) 

The difference n in the number of atoms is found from 
the condition 

n = -BQ/iJh. 

It follows from (31) and (32) that the thermodynamic 
function <I> = Sl + hn at fixed n is · 

(32) 

p2 n2 . Tc"( T-Tc0 -cp Eln') QJ(n,p,T)=Qo--+--Tc''f(x)+ ~::- x------- --~---
2Ko 2x 21. Tc" x' 
T - T 0° - cp 8n2 

T 0 +-, =x-Xf(x), (33) 
where c X 

'}, = A - 4T c082n2 I )(3• 

As is evident from (33), at a sufficiently large con­
centration difference n, corresponding to negative ~. 
x and <I> are single-valued functions of T, and the sys­
tem undergoes a second-order phase transition at 
temperature Tc =Tc + cp- T(;®n2 x-2• 

The thermodynamic quantities Cp, (BV/BT)p, K, 
and Kad are given by formulas (16), in the denomina­
tors of which it is necessary to make the substitution 
A - ~. In the expressions for Cy and (apjaT)y, it is 
necessary to make the substitution A(3Ko/ 4p.) 
- A(3K0 /4p.) + 4T(:e:n2 x-3• In a second-order phase 
transition, when 'X < 0, the quantities Cp, Cv, K-1 , 

Kad• (BV/BT)p, and (ap/BT)y remain finite at the 
transition point. 

8. MAGNETIC TRANSITIONS 

So far we have considered only the classical expres­
sion (2) for the free energy. The assumption of clas­
sicality is not essential to the result. We consider, for 
example, the Heisenberg model of a ferromagnet with 
allowance for acoustic phonons. The Hamiltonian of 
the system in this case is 

H = {1 + qnaa.)Ho + Ko Ua.a.' + _!_ ~ [ iqka.ua.(k) ~ V;1S;S1eik(r,-rl) 
2 N k,-,o ;; 
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H0 = L V;;S;S;. 
ii 

(34) 

Here Si is the quantum operator of the spin at the site 
with coordinate ri. 

In the expression for the free energy F = -T ln Sp 
exp ( -H/T), the Gaussian integrals with respect to 
ua(k) cannot now be calculated directly, since the 
operators with different k that enter in H do not com­
mute with each other. Therefore we use the diagram 
analysis of perturbation theory[ 10l. We shall assume 
that the character of the transition will be the same as 
in the usual Heisenberg model with Hamiltonian H0 in 
the case in which the diagrams for the effective inter­
action have no singularities at small momenta. Inter­
action by exchange of phonons is absent when the mo­
mentum exchanged is zero, but has a nonvanishing 
limit for k - 0. To remove this singularity, we add to 
the Hamiltonian a term -Y2 11Hg, which describes a 
four-spin interaction with zero transferred momentum. 
We choose 11 so that the complete interaction has no 
singularity at small k. As a result, we write H in the 
form 

(35) 

where ~ = quaa and 11 = q 2/(Ko + %tJ.)N. 
The Hamiltonian H leads to diagrams that have no 

singularities at small k. The singular part of the free 
energy corresponding to it has the form (2 ). The 
second term in formula (35) does not change the form 
of the singularity but leads only to a change of the 
transition temperature. Consequently, if we consider 
11 and ~ as independent parameters, we can write 
F( 11 = 0) in the form 

( T- To0 ) Ko 
F(v= 0)= -T0°f ----g~ +-u""z. 

Tc 0 2 
(36) 

At small strain the constant g is close to unity. 
In order to determine F for 11 "" 0, we use a formal 

method presented in [uJ. With statistical accuracy, the 
mean square ( Hg) is identical with the square of the 
mean ( H0 ) 2• Therefore the function F satisfies the 
equation 

2 8F =( 8F)z 
av a~ 

and the initial condition {36 ). 
The solution of this equation can be described in the 

parametric form 

F=--1_(T-Too -g;-x)z-Tc"f(x), !!_.=0. (37) 
2vg2 \ Tc0 ax 

On substituting the values of 11 and ~ and expressing 
uaa in terms of the pressure p by use of the equation 
p = -aFjauaa• we get for the thermodynamic potential 
the Gibbs expression (12 ). Thus allowance for quantum 
effects makes no change in the results obtained above, 
and all the thermodynamic quantities in a ferromagnet 
are determined by formulas {16}. 

The same result is obtained also for a magnetic 
transition in metals, if the interaction with phonons is 
taken into account according to Frohlich's model. The 

Coulomb interaction, however, complicates the situa­
tion in a metal, and therefore this problem requires 
special treatment. 

9. CONCLUSION 

The results obtained above pertain to the elastically 
isotropic case. Small deviations from isotropy will 
lead to small corrections but do not affect the results 
obtained. In the majority of cases, the anisotropy is 
not small. It may be supposed that the qualitative re­
sults and the order-of-magnitude estimates will be 
correct even in the general case. 

It is to be expected that a first-order transition will 
occur when 

(38) 

where A. Cp is the anomalous part of the heat capacity 
of unit volume. In many cases it may be assumed that 
without allowance for acoustic phonons, the heat 
capacity will behave in the following manner: not very 
close to the transition, the heat capacity is described 
by Landau's phenomenological theory and has a jump; 
with approach to the transition temperature, correla­
tion corrections proportional to I T - Tc l-1/ 2 become 
important; in the immediate neighborhood of a transi­
tion point of the second kind, the heat capacity becomes 
infinite according to a law close to the logarithmic. 
Depending on the values of the quantities that occur on 
the left side of formula (38 ), a first-order phase transi­
tion has various characters. If the left side exceeds 
unity even in the phenomenological region, where A.Cp 
is the jump in heat capacity, then the first-order phase 
transition can be described by the approximation of the 
self-consistent field[ 12l. If it is less than unity, but 
close to unity, then the first-order transition is de­
scribed by formulas {16), where f"(x) can be calcu­
lated in the first approximations of the self-consistent 
field. 

At small strain, the first-order transition occurs in 
the asymptotic region, where f" (x) has a form close to 
-A ln I x 1. In this case the thermodynamic quantities 
are described by formulas (23). For example, in quartz, 
KH 2P04, and NH4Cl the quantity A"A that occurs in 
formula (23) ~Ys. Then the temperature hysteresis 
liT ~ 0.1"K, in agreement with experimental data. The 
change of the adiabatic moduli in these substances is 
of the order of the moduli themselves, in agreement 
with formulas (23). In quartz there is also observed[1 3 J 
an anomalous behavior of Poisson's ratio, which be­
comes negative near the transition over a temperature 
range considerably exceeding the temperature hystere­
sis. 

In triglycine sulfate and some magnetic materials, 
A"A :=:; 0.1. Therefore the left side of formula {38} is 
less than unity over the whole experimentally attainable 
range of temperatures. In this range, the heat capacity 
behaves the same as for a second-order phase transi­
tion, but the anomalous additions to the elastic moduli 
are small, in agreement with experiment. In these sub­
stances the values of oT, oS, and oV, in accordance 
with formulas (21) and {25), are exponentially small 
and not observed experimentally. 
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For a quantitative test of formulas (23) it would be 
interesting to know the behavior of the heat capacity 
and the elastic moduli in substances with small aniso­
tropy; for example, in Y3Fes012• 

In closing, we thank V. G. Yaks and D. E. Khmel'nit­
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