Lecture 9
Kinetics of Type I Phase
Transitions.
Nucleation and Coalescence.

Studying the kinetics of the type I phase transitions, i.e.
the dynamics of the growth of a thermodynamically more
advantageous phase within the less advantageous one, we
come across several problems, of which we will examine two:
nucleation and coalescence.

Type I Phase Transition. Transition Line.

Consider the condensation of a liquid from an over-saturated
vapour. It is known that the phase equilibrium occurs on
the line T;(p) in the p—T plane. On this line, the molar free
energies of vapour and liquid coincide, Fy(T,p) = F,(T, p).
This gives

=S dT + vidp = —S,dT + v,dp, (1)
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where S; and v; are the molar entropy and the molar volume
respectively in both of the phases. Equation (1) leads to
the Clapeyron-Clausius equation for the line of the phase
transition:

d Av A

) =1g=T5" 2)
where Av = v, — v; is the difference in molar volumes in
vapor and liquid and A is the latent heat of evaporation. If
evaporation occurs at temperatures much lower, than the
critical temperature, then the volume of liquid is negligible,

while the volume of vapour phase obeys the law
vyp = RT.

This gives, approximately,

Thus, liquid and vapour have equal free energies at the tran-
sition line. On both sides of this line, either liquid or vapour
are advantageous as the bulk thermodynamic phases. Nev-
ertheless, the less advantageous phase (say, vapour) remains
stable by itself (meta-stable). Moreover, we will see that the
process of transition is considerably hindered.

The transition of vapour into liquid goes through formation
of small droplets. The formation of a droplet of radius a
leads to the energy gain — (4ma®/3) AF due to the differ-
ence in the bulk free energies (AF = F, — F; > 0) and to
the disadvantage of creating a surface 4waa?, where « is the
surface energy. Fig 1 shows that total energy of formation

pe(T) x exp

of a droplet versus its radius a. One can see a potential bar-
rier of the height F, = (167/3)a?®/(AF)? at the the critical
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radius a. = 2a/AF. The closer we are to the transition line
(small AF), the larger is the critical radius, and the higher
is the barrier. The droplets of a small radius a < a,. are
unstable with respect to collapse. The droplets of a large
radius a > a, are also unstable: they grow and with their
growth the vapour phase is replaced the liquid one.

Therefore, the process of condensation of an over-saturated
vapour begins with nucleation of the droplets of the crit-
ical radius a.. After a considerable amount of vapour is
transformed into these droplets, the over-saturation drops
down. This makes the nucleation of new droplets very un-
probable, and the nucleation is substituted by the coales-

Figure 1: Free energy of a droplet in a vapor as a function of its radius
a
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cence, i.e. growth of already existing droplets.

Nucleation

The distribution function f(a,t) of droplets in their size
a varies in time because the droplets of over-critical size
a > a. continue to grow, while the droplets of under-critical
size a < a. experience two trends: they are collapsing due
to surface pressure ad grow due to fluctuational condensa-
tion of vapour on them. The quasi-equilibrium distribution
function

fo(a) = exp [— F;a)] , Fla) = —87;::3 + 4raa®  (4)

gives the thermal fluctuation driven “equilibrium” distribu-
tion of the droplets. Near the top of the barrier, the free
energy F'(a) may be expanded to second order in a — a,:

4 3
F(a) ~ ﬂ;ac — 4nala — a.)?, (5)

so that the distribution functions fy(a) is approximately
equal to:

fo(a) = fo(ac) exp l (6)

Araa® ]

47roz(aT— ac)2]

C

3T

(7)

Equation (7) gives (to the exponential precision) the amount
of droplets which have reached the critical size and may

folae) = exp [—
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grow further, or the rate of nucleation. The purpose of
the kinetic theory is to calculate the pre-exponential factor.
The process of the droplet’s growth (or collapse) involves
molecules of the vapor condensing at the droplet (evaporat-
ing from it) as a result of their thermal motion. Since this
is a very gradual process, the distribution function f(a,t)
obeys the Fokker-Plank equation:

of 0s . g F(a)
5 T =0 5= B(aa+f T), (8)

where a new kinetic coefficient B has the meaning of the
coefficient of diffusion in sizes of droplets. The boundary
conditions Eq (8) are:

f(a) f(a)
fo(a) fo(a)

Stationary nucleation corresponds to a constant flux s, which
itself may be be expressed through the ratio f(a)/fo(a):

s=-Bfy > L (10)

da fo

=1, at a — 0; =0,ata —>oc0. (9)

Equation (10) gives

fla) L da
mw - Bh@ (1)

where the limits of integration should be found from the
boundary conditions (9):

f(a) [ da 1 _ o da
A~k Bp@ s h Bp@ 0¥
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Since the integrand in Eq (12) has a strong maximum at
a = a., the region near it determines the value of the flux
which can be found from the boundary conditions (9):

5= 2@ Blad) folae) (13)

Equation (10) gives the rate of nucleation per unit volume
and unit time. As it has been mentioned, this rate is expo-
nentially small for small over-saturation of the vapour and
the pre-exponential factor is determined by the coefficients
of “diffusion” in radii B for the critical radius a, and the
distribution width da = (47a/T)'/? caused the by thermal
fluctuations.

Coalescence

As it has been mentioned, nucleation occurs only at the
initial stage of transition. When the amount of droplets
exceeds a certain limit, the process of coalescence of existing
droplets prevails over nucleation. The distribution function
f(a,t) still obeys the Fokker-Planck type equation (8), in
which the diffusion-like term may be omitted:

of 0

5 T (@) =0. (14)

Having in mind the condensation of the water vapour in air,
let’s determine the kinetic coefficient @ (or, equivalently, B
of the previous section). If the centre of the droplet of
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radius a is at the origin and the equilibrium concentration
of the vapor in air far away from the droplet is ¢y, then the
equilibrium concentration ¢y at the surface of the droplet
differs from c, due to Laplace’s surface pressure and is
equal to:

2c
— Cxo 1 3 1
o= c ( +Tacw) (15)

where ¢, is the molar density of water.

The growth of the droplet occurs due to the diffusion of the
vapour from infinity to the droplet. The stationary solution
of the diffusion equation,

DV?c(r) = 0,
which depends on radius only, has the form

c(r)=c—(c— )

3|

The growth of the droplet’s volume, V = 4ma?a, is deter-
mined by the diffusion flux j = 47wa®D(dc/dr),—, multiplied
by the ratio of molar concentrations ¢, /c:

a:DCC_CO:D@(A—g), (16)

Cw G Cw @ a
where
200Cs
g =
Tcy
and A = ¢ — ¢y is over-saturation of air by vapour. The
value
o
arlt) = <2 (17)



8

is the critical radius of the droplet (in the sense of nucle-
ation) for the given over-saturation A(t) which itself de-
pends on time. Thus, coalescence begins at time ¢ = 0 with
a certain over-saturation A(0), when the critical radius is
equal to a.(0). The radius of droplets change with time',
obeying the equation of growth:

Q= agio) (acl(t) - é) . (18)

If the total initial over-saturation is (), then the over-saturation
at a given time diminishes with time, and more and more

vapour condenses into droplets:

Alt)+q(t) =Q, qt) =

47 Cuw

/ f(a,t) a*da.  (19)

3 Coo
Now we have to solve Eqs (14) and (18) with the constraint
(19). It is natural to use the variable
a
ac(t)
instead of the droplet’s radius a and an implicit time z =

a.(t)/ac(0) instead of the explicit time ¢. It is even more
convenient to use the logarithmic time

7 =3Inz(t).

u =

After all these substitutions, the growth equation (18) takes
the following form:

A = b = (=1~ () =

From now on, until the formulation of the final results, we will measure time in
the units of a2(0)cy/Dcooo

> 0. (20)
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Figure 2: The growth function ®(u) of a droplet as a function of its
radius u

At any given time 7, the right hand side of Eq (20) has a
maximum at u? = v/3 and

ow=1[t ()]

Therefore, depending on the value of v, the function ®(u)
either has two zeros, or one double zero, or no zeros at
all and ®(u) < 0 (see Fig 2). The double zero occurs if
®(ug) =0, i.e. for v =y = 27/4.

For v < = the function ®(u) is negative for all v > 0
(see Fig 2, a ). This means that irrespective of the initial
condition for Eq (20), u = 0 at some finite time 7. At this
time, q(t) = 0 contrary to the basic assumption. Therefore,
this may not be true.

For v > 7 the function ®(u) has two zeros, u; < ug, and is
negative if u > u9 and u < wq, and positive if u; < u < ug
(see Fig 2, b ). This means that if the initial condition
belongs to the interval [0, u;], then the radius goes to zero
in a finite time ; otherwise, it goes to u = ws. So, the
distribution function has a peak at a(t) = wa.(t) — oc.
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This leads to the volume of the condensate ¢(t) growing
indefinitely with time, which contradicts to the constraint
(19).

In the case v = v, ®(u) < 0 with ®(u) = 0 for u = ug only.
This leads to u evolving towards zero in a finite time if the
initial condition belongs to the interval [0, up] and evolving
towards wug if the initial condition belongs to the interval
[ug, o0]. Thus, if

27

(1) = 1[1—62(7)], €(7)lr—00 = 0, (21)

the evolution of the initial condition includes drift to small
values of dimensionless radius u which is accompanied by a
long time spent at u & ug. The occupation numbers f(a,t)
at a = ac(t)ug plays the role of the initial conditions for the
universal distribution for u < ug

The condition v & vy = 27/4 gives

de 4 a.(t) 44\1/3
Ry S == . 22
it U a.(0) (9) (22)

The last equation gives the time dependence of the critical
radius for a droplet in an over-saturated vapour in air at
a given time ¢ — oco. For u ~ uy = 3/2, the equation of
growth (20) takes the following form:

du 2 N2 €2
L (YA R 9
dr 3(“ 3) 9 (23)

Introducing a new variable
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we can rewrite Eq (23) in the form

where

Equation (24) may be investigated in the same manner as
Eq (20). Using the same reasoning, we arrive at the conclu-
sion that ¥(z) < 0. Completed the square in the right-hand
side of Eq (24) ( ¥(2) = —(z — 1/2v/3)?), we see that the
U(1/2v/3) = 0 at n = 2/+/3. Therefore, the limit of the
function n(7) as 7 — oo is n = 1y = 2/v/3. This gives the
asymptote for e(7):

(1) = 2£3 (25)

The asymptotic distribution of droplets in their radii a may
be obtained as a solution of the Fokker-Planck equation
(14). The distribution function ¢(u,t) = f(a,t)/a.(t) in
dimensionless variables u and 7 obeys the equation:

9 &
5 T (@9) =0, 2 (26)
u(u)zj—i”:—g—; (u—g) (w+3).  (27)

The solution of Eq (26) has the form

p(u,r) = XT=TWI Ly /I d (g)

—u(u) 0 u(u)

where x is an arbitrary function of its argument. The func-
tion ¢(u) is different for w > 3/2 and u < 3/2. For u > 3/2
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Figure 3: Asymptotic distribution function as a function of droplet’s
radius u

the distribution function ¢(u) is determined by the evolu-
tion of the distribution at previous times and for even larger
u. Since the function decays very quickly with increasing
u, p(u) = 0if u > 3/2 and 7 — oo. If u < 3/2 and
T — 00 the universal distribution develops. In the limit of
large times 7, when almost the whole excess () is condensed
into droplets, the constraint of matter conservation looks as
follows:

4ma.(0)3cy,
ke’ /Ou wd(u, T)du = 1; K = %.

Since the right-hand side of Eq (29) does not depend on 7,
its left hand side should not depend on it either. So,

(29)

x|t —7(u)] = Ae ™) = Ae" P(u). (30)
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Substituting Eq (30) into the integral for 7(u) in Eq (29),
we obtain P(u) = exp|7(u)]:

3t 2 3 3
Plu) = { 55 Gt o [—5tn] v <3

0, u > 3/2. (31)

The function P(u) (shown in Fig 3) is automatically nor-
malized

3/2

A duP(u) = 1.
The constant A is calculated numerically, which gives A =
.9/k. So, the total number of droplets N in the unit volume

1S:

N = /daf(a,t) = /dugb(u,r) = Ae™" = ? (32)
Also, we have
[duP)(u—1)= [ e (u— 1)% =0. (33)

The last equality in (33) can be obtained if u — 1 is found
from Eq (20). Therefore, the mean dimensionless radius @
of a droplet is

= [uduP(u) = [ duP(u) =1, (34)

i.e. it is equal to the critical radius a.(t) at over-saturation,
characteristic for a given time ¢. Finally, the radius of a
droplet and the current critical radius at a given time ¢ is

B <4O’DCOO t) 1/3
U 9¢, '

a



