Lecture 8.
Kinetics of cascade processes. An example:
‘Dallistic’ phonons in dielectrics. Non-local phonon
thermo-conductivity.

There are many phenomena in kinetics of the phonon systems
in dielectrics. We present here one example of it.

Experiments with hot acoustic phonons.
Elementary acts and their rates.

Consider the following experimental setup: a laser beam illumi-
nates a crystal of GaAs and, through light absorption, gener-
ates electron-hole pairs. These pairs recombine emitting opti-
cal phonons with nearly zero momentum q ~ 0 and frequency
wro(0). Since the group velocity of optical phonons is very low,
the excitation energy remains localized at the spots which the
laser beam is focused at. Due to anharmonicity, the optical
phonons (LO) decay into a pair of acoustic phonons A and A’
with finite momenta q and —q, which can be found from the
energy-momentum conservation condition:

wro(0) = wa(q) +wjy(—q)
Acoustic phonons are propagate through a crystal at the speed
of sound (wa(q) = sq), colliding with point defects! and expe-

!Even in a very clean and carefully grown crystal, the nuclear masses fluctuate from
site to site due to large number of isotopes of both Ga and As. These random fluctuations
of the masses cause irregularities, which lead to elastic scattering of phonons.

1



LO

Figure 1: The scheme of a hot phonon experiment: a. The real space setup;
b. Decay of an optical phonon into two acoustic

riencing anharmonic processes of a single phonon splitting into
two and two phonons coagulating into one?. These processes
lead to fast evolution, both in space and time, of the distribu-
tion function of acoustic phonons in their frequencies. Attaching
local thermometers (bolometers) to the crystal, experimentalists
measure the rate of energy propagation. The purpose of this lec-
ture is to develop the relevant theory.

The simplest elementary process is elastic scattering of a phonon
of frequency w and wave vector ¢ = w/s, say, by fluctuations of
the uniform distribution of isotopes. Since the isotope irregu-
larities in different elementary cells are not correlated, the scat-
tering is equivalent to that by an impurity of atomic size a. The
probability w(q,q’) of such a scattering per unit time is pro-
portional to the speed of sound s multiplied by concentration of

2The dominant process is the decay in which the phonon frequency decreases. Being re-
peated, this process causes a cascade, which has given the name to the whole phenomenon
we are discussing in this lecture



imperfections N oc a~3 and by the scattering cross-section o
we(q,q’) = Nsdo.

The scattering of a long wave-length phonon by a point-like
scatterer obeys the Rayleigh law o o a?(w/wp)? and depends
on the second moment of the isotope distribution

((6Mga)?) + ((6Mas)*)
(MGa + MA3)2 -

we 62 (i>4. (1)

a wp

0 =

Finally

In the leading order in anharmonicity, there are the following
inelastic processes

e spontaneous decay of a single phonon into two phonons;
e background induced decay;

e spontaneous coalescence;

e inelastic scattering by the background.

The probabilities of the processes are:

W1—>2 = Z |M(Q7 qi, q2)|2Nq (1 + NQI) (1 + N‘D) 5wq_wq1_qu; (2)

q192

WQ—)l — Z |M(Qa qi, qQ)|2 (1 + N‘ll) (1 + NQZ) Nq 5"qu_"*’ql_o‘)‘f (3)

q192

The probability of the processes of spontaneous decay is given
by Eq (2) in which the occupation numbers N, , are neglected.
Keeping them in Eq (2) corresponds to taking into account the
background induced decay processes. Equation (3) describes
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the probabilities of both spontaneous coalescence of phonons
with momenta q and q; (if Ng,, are neglected) and the back-
ground induced scattering of the q-phonon by the q;-phonon
with transformation into the qs-phonon. Under the condition of
equilibrium and at wq ~ 7', the occupation numbers are of the
order of unity, being small at high-frequencies. In the course
of the cascade processes, considered in this lecture, the occu-
pation numbers remain small in a broad range of frequencies.
Therefore, the cascades are dominated by the processes of spon-
taneous decay. Only at very low frequencies @w the occupation
numbers become of the order of unity. At these frequencies the
rate of coalescence processes is comparable with that of decays,
and, as a result, the distribution function at w ~ @ has ap-
proximately Planckian form with the temperature 7' ~ &. So,
the complete frequency range 0 < w < wy & wrp/2 can be di-
vided into two intervals: the cascade interval W > w < wy, in
which only processes of spontaneous decay are significant, and
the range of thermolization 0 < w < @ in which the induced
decay and coalescence processes are significant.

Boltzmann kinetics equation for hot phonons and the
diffusion approximation

If we neglect the collisions, the phonon distribution function
N(t,r,q) obeys the conservation law:

ONq Ow(q) ONg ow(q) q
ot T aq or U 7 (4)




If the effect of collision is taken into account, a non-vanishing
right-hand side appears in Eq(4), called “the collision integral”:
% +5 g % = St {Ng} +St,piN + G, ()
where St. is responsible for elastic collisions, St,,{ Nq} is respon-
sible for the phonon-phonon collisions and G « § [w(q) —w,| de-
notes a generation source, associated with the acoustic phonon
pumping. This is the famous Boltzmann equation. Introducing
new terms is, of course, a pretty innocent act. But, already,
the assumption that these terms (in the equation for the dis-
tribution function N(¢,r,q)) depend only on the distribution
functions taken at the same time ¢t and the same point r, is
a conjecture®, according to which neither two phonons nor a
phonon and a scattering center, initially involved in the colli-
sion process, ever meet again. This presumption of a fast decay
of correlations caused by the collision process needs, of course,
a justification, which could be given and which we omit for the
sake of a brevity.
The collision integral for the elastic collisions, St., expresses the
probability of either scattering from the state q to the state ¢’
or vice versa. If the probability of the elementary scattering act
per unit time is w(q,q’) = w(q’, q), then the collision integral
takes the form:

Ste{Nq} = Z:w(q’, q) Ny (1 + Ng) —w(q,q)Ng (1 + Ny) =

=2 w(d,q) (Ng = Ng)- (6)

3The so called Boltzmannian “Stosszahlanzatz”



This gives the following expressions for the elastic relaxation
rate 7, ! and the transport relaxation rate Tt_rll

1 1o 1 1o l qq/:| 5(‘-‘})4

— = w N ~ — X ]_—— Né— e

- %Z (d.q) - %3 (d,d) - ol e
(7)

The phonon-phonon collision integral St,,{ Nq} describes the ef-
fect of phonon decays and coalescences on the distribution func-
tion. Using Egs (2) and (3), we arrive at the expression:

Stpp{Nq} = Spp = Sd + S¢; (8)

| M]?

SquX(; 5 1N+ N1+ No) + NiNo(1+ N)J oy (9)

Se= > |MP{=NiN(1+ No) + Ni(1+ No)(1+ N)} 60—, - 10)
q192
Since the matrix element M,_,;,> contains the wave vectors of
incoming and outgoing phonons, it vanishes at small frequencies:

|M|? o< wiwaw. (11)

One can neglect Ny in the cascade range of frequencies. As a
result, the following estimate for the rate of pp-processes might
be obtained:

Sa(w) ~ X Moy —0, ~ [M[Pg(w) o . (12)

Comparing this rate with the elastic one, given by Eq (7), we
can see that in the time interval between two consecutive inelas-
tic collisions there occur many elastic ones. This means that
the momentum distribution relaxes much faster, than the dis-
tribution in frequencies and, therefore, the distribution function
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differs from the isotropic one by a small amount:
N(q) = N, +dN(q); SN < N. (13)

Using this inequality, and omitting, for the time being, the pp-
collision integral, we can reduce the kinetic description to a dif-
fusion one. For this purposes, we calculate the zero and the first
moments of the Boltzmann equation with respect to the angular
variable (the direction q/q of the wave vector):

ON s

B+ (aVN) = S(w) + G(w); (14)
SN = —%qVN- (15)

As a result, we arrive at the diffusion equation:

ON oxr S8 Tr (W)
S~ DW)V’N =S() + Gw), D(w)=""2"2 (16)

where G(w) is the generation term and the decay collision inte-
gral S(w) contains only N(w) and N(wi):

N

S(w) = w0 [ duyW (%) N(w) — ]T\; E:’; (17)
% = [(dW (%) . (18)

Scaling solution.
Different experimental set-ups and corresponding
responses.

Equation (16) is a fairly complicated integro-differential equa-
tion for the function N(w,r,t) * One simplification we have

“In what follows we will omit the “bar” sign.
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already made, eliminating the dependence of the distribution
function N on the direction of the phonon wave vector q. A
further simplification comes from the fact that the kernel W(z)
of the integral equations (17) and (18) does not depend on the
variables of integration w; and ws separately but only on their
ratio wy2/w. Indeed, if w < wy, then the limit w, — co must
be taken in Eq (17) and the relative frequency = = w;/w intro-
duced, which leads to the collision integral (17) in the following
form :

S(w) = w { [T W(@)N(we) de — N(w) [ W() d:c} . (19)

This form of the collision integral allows to introduce the follow-
ing scaling:

t = nra(w), r=RL;(w),

wp\ 972
La(w) = VD(@)ra(@) ~ 62 (U) @0
so that
N(w;r,t) = f(w,n; R),
and
% - % = [ W(@)f(wr) dz - f(w) /01 W(z) dz + G. (21)

We consider now several related problems associated with dif-
ferent experimental setups.



Spectral evolution in a homogeneously excited crystal.

Consider an experiment, in which the phonon generation is car-
ried out uniformly over the sample volume by means of a short
pulse at time ¢ = 0 and frequency w, — dw < w < wy + dw. The
total energy of the pulse is £/, which means that the occupation
number of initially generated phonons is N, = E/(hw, dwg(wy)),
where g(w) is the phonon density of states. At subsequent time
t > 74(wy) the distribution function f(w) looks like it is shown
in Fig 2.: a maximum at w = w; and a long tail towards high
frequencies. Since the rate of decay 74(w) rapidly increases with
decreasing frequency, the total time of the cascade t is of the
order of the time of its last stage, 74(w;)

brTa(wy) — wp~w,s [Td(;"*)r/5 (22)

gN

To

Figure 2: Time evolution of the spectrum for uniformly excited phonon sys-
tem



Since the total energy is conserved, the spectrum f(w) in the
interval w; < w <K w, is determined by the the energy conser-

vation condition:
hw.g(ws)dwN, = /:O hwg(w) f (w, t)dw.

Assuming a power-law solution

w 1

Flw,t) = f(uwn, )® (_>  B() = {

Wt

: z =1

we, finally, deduce from Egs (22) and (23)

O )

wie \ 7a(ws) wy

where the function ®(z) has the following asymptotes:

1, x=1;
q)(x) - { z~? z > 1.

x?, x> 1.

(23)

(24)

(25)

A similar conclusion can be obtained directly from Eq(21). The
energy conservation condition leads to the following equation:

Td(w)

If we look for a power-law solution of Eq (21)

f(w,n) = Aw’¢(n),
then the function ¢(n) obeys the equation:

%5;7) = —¢(n) + /01 dz 277 °h(z)¢ <1> ;
W@
Jo ¥W(y)dy
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= /01 dzzW(z).

h(zx)

(26)

(27)



The index o can be found from the energy conservation. In the
long time limit n > 1 the total energy E(t) is equal to:

E(t) = [ dwg(w)hwf(w,t) =
I

A ; ndn (N (0+4)/5

= W g@loma [ (1) 6 = Be. (28)
nm ATk

with 7, = t77(w,) > 1. The integral on the right-hand side of

Eq(28) does not depend on 7, if o = —4. Under this condition,

the normalization reads

1 roodn 27253

Sl ot =1 3 (29)
The dimensionless equation for the dimensionless function ¢(n)

06(n) _ ! UAY

“on —é(n) +/0 dzh(z)d <§> ;

W(z)

h(z) = 30
@)= Ty (80)

should still be solved, which could be done, using the Mellin
transform.

Finally, the time of thermolization 77 could be found from the
estimate

= Ta(w=T) ~ 74(wi) <%>5

Stationary excitation.

Consider a steady and uniform excitation at w = w,. Under this
condition the flux @ = FE(w)7y(w) down in frequency does not
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Figure 3: Phonon spectral density in the case of stationary excitation

depend on frequency w. Equation (21) takes the form

Q
S G(w); Gw)=———— — Ws), 1
@+0W: G = T dw-w), (D
which leads to the integral equation
1 a—5d_x
| hl@) . (32)
with the normalization condition
1
| ) @ dz =1. (33)

Equations (32) and (33) lead jointly to the conclusion that o =
—9. The distribution function f(w) has a power-law tail at high
frequencies:

Q7a(w) -9
flw) = m xX w7,

The spectrum is shown in Fig 3.
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Local excitation and signal arrival time.

Since the down-conversion occurs slower than the elastic scat-
tering, the initial hot spot will spread out diffusively and in time
T4(w) cover an area of radius L(w) = /D(w)T4(w) ~ s1/Te(w)Ta(w) o
w™/2. On the other hand, since the diffusion coefficient D(w)
strongly increases with the frequency down-conversion, the con-
tribution of the last stage of conversion dominates the spread.
Therefore, the characteristic frequency w; at the time ¢ is deter-
mined by Eq (22) and the arrival time ¢; at the point situated

at a distance L is determined from

L = L(w;) w90 st oc LY,

Therefore, the down-conversion makes the diffusive spread look
more like ballistic propagation.
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