Lecture 7
Boundary problem for kinetic
equation. Normal and anomalous

skin-effect.

1.Normal Skin-Effect

Everybody knows that metals reflect light like a mirror.
Quite clearly, this comes from their good conductance. In-
deed, the Maxwell Equations in a metal look as follows
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where the Ohm’s law j = oE is used. In these equations,
we can neglect displacement current if 47o > w. If the
Drude formula for conductivity
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is taken into account, then the last criterion can be rewrit-
ten as

W
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and derive the resulting equation
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which gives exponential decay of the field strength with the

penetration depth ¢

H(z) = H(0)exp{r 2}

with
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High frequency losses under condition of skin effect comes
through the product () = JE, where J is total surface cur-
rent which can be expressed through strength of magnetic
field H(0) on the surface
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Result is that
E=7(w)J

where Z(w) is, so called, surface impedance, which is equal
to
2mw ;- /4

Z(w)=R—iX = |~ (6)
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2. Anomalous Skin Effect and Concept of
Non-effectiveness

Anomalous skin effect occurs when 6 < [ (or xl > 1).
Under these conditions, not all electrons are contributing
to the screening but only a small part of them and the
effective conductivity is reduced by the factor 1/xl:
o netl

Teff ™~ g = (7)
where the Eq (3) is used. One can see from Eq. (7) that
ocrf does not depend on the mean free path [ at all. If
to substitute o.s; from Eq. (7) into Eq (5) then a self-
consistent condition appears, which has a solution
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Surface impedance Z under conditions of anomalous skin
effect is equal to

4pF>1/3 <7Tw>2/3 iy
7= ) e 9
<n62 c2 9)
Condition 6 < [ for anomalous character of skin effect can
be rewritten through frequency w as
CQPF
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3.Quantitative Theory

We will consider electrons in the conducting semi-space at
z < 0, while alternating electric field E is directed along
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x-axis. Dynamics of electrons is govern by the linearised
Boltzmann equation:

df 0

do '
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dz de T
Its solution has the form
xd (©0) < *
6f(z,v) = ez / / E(Z') exp P (z — 2| da, (12)
v, de .

where direction of electron’s velocity is convenient to char-
acterise by its spherical angles 6 and ¢:

v, = vcosh, v, = vsin 6 cos ¢. (13)

The lower limit of integration in Eq (12) should be found
separately for electrons, running either to the surface (cos ) >
0) or from it (cos@ < 0). Electrons with cos# > 0 are com-
ing from the depth of metal, where they have equilibrium
distribution. Therefore,

evy df 0 12 wy(z — 2/
df=(z) = — xi/ E(Z) exp {z¥] dz'. (14)

v, de J- v COS

Electrons with cosf < 0 are coming after a collision with
the surface. Therefore,

L Wy 2
df<(z) =03f-(0) exp lzvcos (9] +
eV, df(o) 0 , wi(z —2') /
v de /Z E(z)eXp ZW dZ . (15)

Distribution function of scattered electrons 6 f-(0) is con-
nected with that of the incident electrons §f~(0) through
the Fuchs condition:

df<(0, —cosB) = pd f~ (0, cosh), (16)



5

where p is coefficient of specular reflection. For completely
specular reflection p = 1, and distribution of reflected elec-
trons coincides with that of the incident once with substi-
tution cosf@ — —cosf. For completely diffusive reflection
p = 0 and there are no non-equilibrium scattered electrons
0 f- = 0. Therefore, for diffusive surface scattering

eV, dJ;(:) /ZOE(Z/) exp [z'iw*(z — Z/)] dz',  (17)

v cos b

0f<(z) =

Uz

while for specular surface scattering
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v, de
evy df® 0 wy(z—2)
+ v, dE /z E(Z ) €xXp ZW dZ(lS)
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In the further presentation we will consider only specular
scattering.

Current j(z) may be found through non-equilibrium part
of distribution function ¢ f:

j(z) _ %/de </01 xdx5f>(x,e, z) + /01 $d$f<($,€, Z)) =
= [T k(|2 - /)DE(): (19)

where a symmetric continuation of electric field E(—z) =
E(z) on the positive semi-axis is assumed. The kernel K (z)
in Eq (19) is easier presented by its Furrier transform (re-
member that kl > 1)

K(Z) _ /-1-00 dk
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Therefore, the wave equation for electric field F(z) has the
form:
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where the term with -function arose due to derivative dis-
continuity, caused by continuation to the positive semi-axis
of z. Eq (21) could be solve by using the Furrier transfor-
mation
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As a result,
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E(0) _ 4 explirm/6] (25)

E'(0) 33 b3
Left hand side of Eq (25) is directly connected with surface
impedance
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2 E'(0) 9 ( ctne? (1-iv3),  (26)
which exhibits not only all dependences, obtained by the
Pippard’s qualitative analysis, but also the relevant coeffi-
cients.




