
Lecture 7

Boundary problem for kinetic

equation. Normal and anomalous

skin-effect.

1.Normal Skin-Effect

Everybody knows that metals reflect light like a mirror.

Quite clearly, this comes from their good conductance. In-
deed, the Maxwell Equations in a metal look as follows

curlH =
4πσE

c
+

1

c

∂E

∂t
, divE = 0 (1)

curlE = −1

c

∂H

∂t
, divH = 0. (2)

where the Ohm’s law j = σE is used. In these equations,

we can neglect displacement current if 4πσ ≫ ω. If the
Drude formula for conductivity

σ =
ne2τ

m
(3)

1



2

is taken into account, then the last criterion can be rewrit-

ten as

Ω2
L ≫ ω

τ

and derive the resulting equation

∇2H = − 4πiωσ

c2
H (4)

which gives exponential decay of the field strength with the

penetration depth δ

H(z) = H(0) exp {κ z}

with

κ =
e−π/4

δ
, δ =

√

√

√

√

c2

2πσω
(5)

High frequency losses under condition of skin effect comes
through the product Q = JE, where J is total surface cur-

rent which can be expressed through strength of magnetic
field H(0) on the surface

J =
∫ 0

−∞
j(z)dz =

c

4π

∫ 0

−∞
dH

dz
=

c

4π
H(0)

Result is that

E = Z(ω)J

where Z(ω) is, so called, surface impedance, which is equal

to

Z(ω) = R− iX =

√

√

√

√

2πω

σc2
e−iπ/4 (6)
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2. Anomalous Skin Effect and Concept of

Non-effectiveness

Anomalous skin effect occurs when δ ≪ l (or κl ≫ 1).
Under these conditions, not all electrons are contributing

to the screening but only a small part of them and the
effective conductivity is reduced by the factor 1/κl:

σeff ∼ σ

κl
=

ne2

mv

1

κ
(7)

where the Eq (3) is used. One can see from Eq. (7) that
σeff does not depend on the mean free path l at all. If

to substitute σeff from Eq. (7) into Eq (5) then a self-
consistent condition appears, which has a solution

κ =





4πne2

c2pF





1/3

e−iπ/6, δ =





c2pF
4πne2





1/3

(8)

Surface impedance Z under conditions of anomalous skin
effect is equal to

Z =

(

4pF
ne2

)1/3 (πω

c2

)2/3

e−iπ/3 (9)

Condition δ ≪ l for anomalous character of skin effect can
be rewritten through frequency ω as

ω ≫ c2pF
2πne2l3

(10)

3.Quantitative Theory

We will consider electrons in the conducting semi-space at
z < 0, while alternating electric field E is directed along
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x-axis. Dynamics of electrons is govern by the linearised

Boltzmann equation:

−iω∗δf + vz
dδf

dz
+ eE(z)vx

df (0)

dǫ
= 0, ω∗ = ω+

i

τ
(11)

Its solution has the form

δf(z,v) = −e
vx
vz

df (0)

dǫ

∫ z
E(z′) exp

[

i
ω∗
vz

(z − z′)
]

dz′, (12)

where direction of electron’s velocity is convenient to char-

acterise by its spherical angles θ and φ:

vz = v cos θ, vx = v sin θ cosφ. (13)

The lower limit of integration in Eq (12) should be found
separately for electrons, running either to the surface (cos θ >
0) or from it (cos θ < 0). Electrons with cos θ > 0 are com-

ing from the depth of metal, where they have equilibrium
distribution. Therefore,

δf>(z) = −evx
vz

df (0)

dǫ

∫ z

−∞
E(z′) exp



i
ω∗(z − z′)

v cos θ



 dz′. (14)

Electrons with cos θ < 0 are coming after a collision with

the surface. Therefore,

δf<(z) = δf<(0) exp

[

i
ω∗z

v cos θ

]

+

evx
vz

df (0)

dǫ

∫ 0

z
E(z′) exp



i
ω∗(z − z′)

v cos θ



 dz′. (15)

Distribution function of scattered electrons δf<(0) is con-
nected with that of the incident electrons δf>(0) through

the Fuchs condition:

δf<(0,− cos θ) = ρδf>(0, cos θ), (16)
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where ρ is coefficient of specular reflection. For completely

specular reflection ρ = 1, and distribution of reflected elec-
trons coincides with that of the incident once with substi-

tution cos θ → − cos θ. For completely diffusive reflection
ρ = 0 and there are no non-equilibrium scattered electrons
δf< ≡ 0. Therefore, for diffusive surface scattering

δf<(z) =
evx
vz

df (0)

dǫ

∫ 0

z
E(z′) exp



i
ω∗(z − z′)

v cos θ



 dz′, (17)

while for specular surface scattering

δf<(z) =
evx
vz

df (0)

dǫ
exp

[

i
ω∗z

v cos θ

]

∫ 0

−∞
E(z′) exp



−i
ω∗z′

v| cos θ|



 dz

+
evx
vz

df (0)

dǫ

∫ 0

z
E(z′) exp



i
ω∗(z − z′)

v cos θ



 dz′(18)

In the further presentation we will consider only specular
scattering.

Current j(z) may be found through non-equilibrium part
of distribution function δf :

j(z) =
eνv

4

∫

dǫ

(

∫ 1

0
xdxδf>(x, ǫ, z) +

∫ 0

−1
xdxf<(x, ǫ, z)

)

=

=
∫ +∞

−∞
dz′K(|z − z′|)E(z′); (19)

where a symmetric continuation of electric field E(−z) =

E(z) on the positive semi-axis is assumed. The kernel K(z)
in Eq (19) is easier presented by its Furrier transform (re-

member that kl ≫ 1)

K(z) =
∫ +∞

−∞
dk

2π
K(k)eikz, l∗ = vτ∗ = v

(

1

τ
− iω

)−1



6

K(k) =
ne2

mv

∫ 1

0

dx

x
· xl∗
1 + (xkl∗)2

=
ne2

pF
· π

|k| . (20)

Therefore, the wave equation for electric field E(z) has the

form:

d2E

dz2
− 2E ′(0)δ(z) = −4πiω

c2

∫ +∞

−∞
dz′K(|z− z′|)E(z′), (21)

where the term with δ-function arose due to derivative dis-
continuity, caused by continuation to the positive semi-axis
of z. Eq (21) could be solve by using the Furrier transfor-

mation

E(z) =
∫ +∞

−∞
dk

2π
E(k)eikz,

−k2E(k)− 2E ′(0) =
ib

|k|E(k), b =
ne2ω

pFc2
. (22)

As a result,

E(k) = −2E ′(0)
|k|

k2|k| − ib
, (23)

E(z) = −2E ′(0)

π

∫ ∞

0

k cos kz

k3 − ib
(24)

E(0)

E ′(0)
= − 4

3
√
3

exp[iπ/6]

b1/3
. (25)

Left hand side of Eq (25) is directly connected with surface

impedance

Z =
4πiω

c2
E(0)

E ′(0)
=

8

9





√
3πpFω

2

c4ne2





1/3

(1− i
√
3), (26)

which exhibits not only all dependences, obtained by the

Pippard’s qualitative analysis, but also the relevant coeffi-
cients.


