
Lecture 5.

Diffusion approximation for the
Boltzmann equation.

Fokker-Planck equation for heavy
particle in a gas of light particles.
Hot electrons in semiconductors

and weakly ionised plasma.
Electron temperature,

current-voltage characteristics,
the energy relaxation rate.

1. Consider a single heavy particle of mass M in the gas

of light particles of masses m (m ≪ M) at temperature
T . Mean energy of the light particle 〈ǫ〉 is of the order of

temperature and its momentum q is of the order of

〈|q|〉 ∼
√
mT, (1)

what is significantly smaller than the mean momentum |p|

1



2

of the heavy particle

〈|p|〉 ∼
√
MT. (2)

Elementary collision processes, therefore, consist of slow
variation of momentum of the heavy particle. Therefore,

the Boltzmann equation for its distribution function f(p, t)

∂f

∂t
−F

∂f

∂p
=
∫

(dq){w(p+q,q)f(p+q)−w(p,q)f(p)} (3)

can be simplified, using the Taylor expansion:

w(p+ q,q)f(p+ q) = w(p,q)f(p)

+qα
∂

∂pα
{w(p,q)f(p)}+ qαqβ

2

∂2

∂pαpβ
{w(p,q)f(p)}.(4)

As the result, the in absence of external force F the Boltz-
mann equation (3) can be presented in the form of a con-

servation law:

∂f(p, t)

∂t
+

∂sα
∂pα

= 0, (5)

sα = −Ãαf − ∂

∂pβ
(Bαβf) = −Aαf − Bαβ

∂f

∂pβ
; (6)

Ãα =
∫

qαw(q)(dq); Bαβ =
1

2

∫

qαqβ w(q)(dq). (7)

Since the equilibrium distribution function

f (0)(p) ∝ exp



− p2

2MT



 (8)

should vanish the whole collision integral,

Aα = Bαβ
pβ
MT

. (9)
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In isotropic system Bαβ = Bδαβ and, therefore,

s = −B

(

p

MT
f +

∂f

∂p

)

(10)

Example

Using Eq(3) with collision integral in the form (10), find

mobility of a heavy particle in a gas of light particles.

2. We consider now the case of an electron in a weakly

ionised plasma, so electron meets only neutral atoms and
scatters on them. Since the mass of electron m is much

smaller than that of the atom (m ≪ M), these collisions
have a quasi-elastic character, i.e. momentum relaxes effi-

ciently at any collision, while the electron energy changes
gradually, obeying a diffusion equation. The resulting ki-

netic equation keeps the form:

∂f

∂t
− eE

∂f

∂p
= − 1

p2
∂(p2sp)

∂p
+Nv

∫

{f(θ′)− f(θ)}dσ, (11)

where

sp = −B

(

p

mT
f +

∂f

∂p

)

. (12)

2.2 In order to evaluate the energy transfer in the ele-

mentary collision act of an electron with velocity v with an
atom with velocity V (velocities after the collision are v′

and V′ respectively), let us note that the energy conserva-
tion in the centre of mass frame leads to following identity

(v −V)2 = (v′ −V′)2, (13)
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which could be transform to even simpler form

2(v − v′)V = v2 − v′2 ≈ 2v∆v, (14)

taking into account that V ≃ V′. From Eq (14) follows the

expression for the momentum transfer ∆p:

(∆p)2 =
m2

v2
[

(vV)2 + (v′V)2 − 2(vV)(v′V)
]

. (15)

Since thermal average gives 〈VαVβ〉 = 〈V 2〉δαβ/3 = Tδαβ/M ,

(∆p)2 =
2m2T

M
(1− cosα), (16)

where α is the scattering angle. One can see from that the
Diffusion coefficient B in modulus of momentum is equal

to

B =
Nm2vTσtr

M
=

mTp

Mltr
; ltr =

1

Nσtr
, (17)

and the flux sp is given by the following expression

sp = − mp

Mltr

(

p

m
f + T

∂f

∂p

)

. (18)

2.3. We can return now to Eq (11) assuming that noth-
ing depends on time t. The term with electric field E in it

could be transformed into the following form

eE
∂f

∂p
= eE

∂f

∂pz
= eE



cos θ
∂f

∂p
+

sin2 θ

p

∂f

∂ cos θ



 . (19)

Since the elastic scattering is strong, we can keep only first

two terms f0 and f1 in the expansion of f(p, cos θ) in Leg-
endre polynomials

f(p, cos θ) =
∞
∑

n=0

fn(p)Pn(cos θ) ≃ f0(p) + f1(p) cos θ, (20)
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and f0 ≫ f1.

The elastic collision term in Eq (11) can be rewritten in the
form

Nv
∫

{f(p, θ′)− f(p, θ)}dσ = − v

ltr
f1 cos θ. (21)

Neglecting diffusion term with s1 compare with s0, we can,
finally, rewrite Eq (11) in the form

−eE{f ′
0 cos θ + f ′

1 cos
2 θ +

f1
p
sin2 θ}

+
1

p2
d

dp

(

p2s0
)

+
v

ltr
f1 cos θ = 0. (22)

Projecting the left hand side of Eq (22) to f0 and f1, we
obtain two equations

1

p2
d

dp

(

p2s0
)

− 2

3

eEf1
p

− 1

3
eEf ′

1 = 0, (23)

f1 =
eEltr
v

f0. (24)

Eq (23) can be re-written in the form

1

p2
d

dp

(

p2S0

)

= 0; S0 = s0 −
1

3
eEf1. (25)

Solution of Eqs (23, 25) has, therefore, the form S0 = C/p2,

while the boundary condition at p → ∞ fixes the constant
C = 0 and, finally, using Eq (24), we obtain the equation

S0 = 0 = − p2

Mltr
f0 +



−mTp

Mltr
− (eE)2mltr

3p



 f ′
0. (26)
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Since the function f0 depends only on modulus p of momen-

tum, it is convenient to re-write Eq (26), using the energy
ǫ = p2/2 as is argument:

f0 +



T +
(eEltr)

2

6ǫ

M

m





df0
dǫ

= 0. (27)

Equation (27) has the following solution:

f0(ǫ) =





ǫ

T
+

γ2

6





γ2/6

exp

[

− ǫ

T

]

, γ =
eE ltr
T

√

√

√

√

M

m
. (28)

Knowledge of zero harmonic f0(ǫ) allows to find the first
harmonic f1:

f1(ǫ) = −f0

√

√

√

√

M

m

γǫ

ǫ+ γ2T/6
, γ =

eE ltr
T

√

√

√

√

M

m
. (29)

Asymptotes of this solution give either linear regime at

γ ≪ 1 or strongly nonlinear regime at γ ≫ 1. At γ ≪ 1
distribution function f0 coincides with the Maxwellian one
exp[−ǫ/T ], while

f1 =
eE ltr
T

f0. (30)

Electric field leads to drift of electrons with the averaged
velocity v = eb0E, where mobility b0 could be obtained

using Eq (30)

b0 =
22/3 ltr
3π1/2

√
mT. (31)

At γ ≫ 1 the distribution function f0 has a Maxwellian
tail, while in the significant range of moderate energies it
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has the form1

f0 ≃ exp



− 3ǫ2

γ2T 2



 . (32)

The mean value of energy 〈ǫ〉 of electrons

〈ǫ〉 ≃ γT = eE ltr

√

√

√

√

M

m
(33)

strongly exceeds, under this condition, the temperature of
neutral atoms T , which forms for electron a thermal bath.
This is why this situation is often called ”the hot electrons”.

In the regime of electrons, ”heated” by the electric field, the
current I depends on field in a non-linear fashion:

I ≃ (mM)1/4l
1/2

tr (eE)3/2. (34)

2.3. The results for the ”hot electrons” regime could

be understood better, if we return to the time dependent
equation (11), keep only two angular harmonics of the dis-

tribution function and use Eq (24). If we multiply the re-
sulting equation we by ǫ = p2/2m and integrate it over p,

we obtain the equation of the energy balance

d

dt
〈ǫ〉 = −〈ǫ〉 − 3T/2

τin
+

e2E2 ltr
6

√

√

√

√

1

m〈ǫ〉 , (35)

where
1

τin
=

1

ltr

√

√

√

√

〈ǫ〉
M

. (36)

1In order to obtain this asymptote, re-write the square bracket in Eq (28) in the
exponential form and expand the logarithm in inverse powers of the large parameter
γ2
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Eq (35) expresses the energy balance through the rates of

energy relaxation τin and heating by the electric field. Un-
der stationary conditions, both right and left-hand sides

of Eq (35) vanishes. If the electric field is weak, than the
heating could be neglected and 〈ǫ〉 = 3T/2. In the op-
posite case, the action of the bath could be neglected and

〈ǫ〉 ≃ eE ltr
√

M/m. The mobility b0 in the linear regime

is proportional to the thermal velocity
√
mT , as well as in

the non-linear regime, while b ≃
√

m〈ǫ〉 ∼
√
eE(M/m)1/4.

This last estimate explains the result of Eq (34).
Finally, we can see that the expression for the mobility (31)

in the linear regime consists of the elastic mean free path
only, while the criterion of linearity consists of the rate of

inelastic collisions (36).


