Lecture 2
Diffusion equation, linear
response, conductivity and the
Einstein relations.T -
approximation for collision
integral. Magneto-resistance, the
Hall effect and thermo-power for
electrons in metals.
Hydrodynamics derived from
kinetics.

We can consider now collisions with static impurities as
a dominant scattering process. The Boltzmann equation
under this conditions looks like the following;:
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where St{f} stays for the collision integral of inelastic col-
lisions.

Integrating Eq (1) over momentums p, and taking into
account that the collision integral St{f} obeys the particle
conservation law [(dp)St{f} = 0, we obtain the continuity

condition: 5 .
n
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Electric current j arise due to two reasons: electric field E
and inhomogeneity of electron density n(r). In the linear
regime

j=0E —eDVn, (4)

where o is conductivity and D the diffusion coefficient. This
two kinetic coefficients are not independent. To find their
relations, consider an electrically isolated piece of conduc-
tor in a steady electric filed E = V¢(r) ( ¢ is electrostatic
potential). The electron distribution function is at its sta-
tionary value fO(p,r). Inelastic collision integral St{f®}
at this function is zero. As for for the elastic collision term
Iimp{f}, it is zero if fO(p,r) = f%[e(p),r]. This all means
that the only space dependence in the distribution function
comes through the chemical potential p(r):

(o) = el — )] = (exp | P71 1>1

Kinetic equation in this case has the form
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which leads to condition of equality of the electro-chemical
potential

[ — ed = g = const. (7)

Current is zero in this isolated sample j = 0, which leads to
0 0

oV¢ = 6D£ -Vu; o= €2D£. (8)

Eq (8) exhibits, the so called, Einstein relation. Substitut-
ing Eqs (4) and (8) into Eq (3), and taking into account
the electrostatic equation

divE = 4men 9)

we find the equation, that govern the relaxation of an extra
charge to its equilibrium distribution (Maxwell relaxation)

0 0

o DVn + 4mnDe? 2" = 0. (10)
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If some leads are attached to a conductor and a voltage
is applied to it, then electric current j passes through even
when the density is uniform. In the leading order in electric

field E the distribution function looks like

f(p) = f¥(ep) + 0.
The Eq (1) has under this condition the form

df©
GVE? = [imp{df} = > w(p, pl)(dfpl - 5fp) (11)
|

Solution of this equation is naturally to search in the form
df©®

Ofp = VEWQ(%),
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which immediately gives

df©)
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Angle 6 in Eq (12) is one between directions of p and p;.
Electric current j obeys to the Ohm’s law:

j= [(dp)evéf(p) = oE (14)
2 2, df© 2
4 3
v(e) = [dp)ble— ) = oary, m= "0 (25)(16)

v stays for the density of states and n for electron density.
Eq (15) exhibits famous Drude formula for conductivity.
The Einstein relation gives an equivalent formula for diffu-
sion coeflicient

U2Ttrl/
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Relaxation time 7¢, gives an inverse rate of momentum
relaxation! Eq (11) is a linearized equation of the type,
which always arises, when a liner response of certain type
is calculated. Since the right hand side is an integral op-

D= (17)

erator and its kernel depends only on the angle 8 between

!'Note that elastic collisions give a finite value of conductance and inelastic col-
lisions are not needed to find it. This could, of course, lead to apparently wrong
impression that a dissipative current flow does not need for its stabilization any
energy relaxation. We return to this puzzle in these lectures later, when the energy
relaxation will be considered in details
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directions of p and p;, everything depends on angular de-
pendence of the left-hand side of Eq (11). If the left-hand
side of Eq (11) contains P,,(cos #), then the collision integral

Iimp could be reduced to, so called, relaxation rate form:
f—f 1
Lo =— = 1— P,(0)]. 18
imp T Ew(p, p1)l (0)] (18)

Here f stays for the distribution function, averaged over
directions of momentum. In all transport phenomena the
momentum relaxation time 7¢, = 7 appears>.

Consider now transport in presence of magnetic field B in
electric field E, perpendicular to magnetic one (E-B = 0).

The linearized Boltzmann equation takes now the form:
df® 9of _ _of

de op Tty
Introducing angle a between direction of electric field E and

a component of momentum p, perpendicular to magnetic
field, Eq (19) could be rewritten in the form

evE + Z [vB] (19)
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Solution of Eq (20) has the form
epy df© a ., a—d
- Pip(_ _ 1
of o ( 7 Re /_oo do/ exp{ia Qe } 1)

epy df© Tty :
- Pip(_ +0
( ic ) 15 @) (cos a + Q7 sin aR2)

20f course, the relaxation rate form (18) is much simpler and more convenient,
than an integral collision operator. Note, that reduction to this form is exact for
elastic collisions.
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Calculating the current, we arrive to the well known ex-
pression of Drude theory

EB
j = 0B + ny[ B ]; (23)
2 2
o, — ne Tty _ Gay = ne? Q7 (24)
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