## THE POSITION OPERATOR

What is  $\langle \psi_i | \mathbf{r} | \psi_f \rangle$ ?

## Consider:

$$\langle \psi_i | \mathbf{p} | \psi_f \rangle = \langle \psi_i | [H, \mathbf{r}] | \psi_f \rangle = \langle \psi_i | H \mathbf{r} | \psi_f \rangle - \langle \psi_i | \mathbf{r} H | \psi_f \rangle = (\varepsilon_i - \varepsilon_f) \langle \psi_i | \mathbf{r} | \psi_f \rangle$$

## And so:

$$\langle \psi_i | \mathbf{r} | \psi_f \rangle = \langle \psi_i | \mathbf{p} | \psi_f \rangle / (\varepsilon_i - \varepsilon_f)$$

## NORM CONSERVING PSEUDOPOTENTIALS

What is  $\langle \psi_i | \mathbf{r} | \psi_f \rangle$  for a non local pseudopotential?

### Consider:

$$\langle \psi_i | \mathbf{p} | \psi_f \rangle + \langle \psi_i | [V_{\text{nl}}, \mathbf{r}] | \psi_f \rangle = \langle \psi_i | [H, \mathbf{r}] | \psi_f \rangle = \langle \psi_i | H \mathbf{r} | \psi_f \rangle - \langle \psi_i | \mathbf{r} H | \psi_f \rangle = (\varepsilon_i - \varepsilon_f) \langle \psi_i | \mathbf{r} | \psi_f \rangle$$

#### And so:

$$\langle \psi_i | \mathbf{r} | \psi_f \rangle = (\langle \psi_i | \mathbf{p} | \psi_f \rangle + \langle \psi_i | [V_{\text{nl}}, \mathbf{r}] | \psi_f \rangle) / (\varepsilon_i - \varepsilon_f)$$

## Ultrasoft Pseudopotentials

What is  $\langle \psi_i | \mathbf{r} | \psi_f \rangle$  when  $H\Psi = ES\Psi$ ?

#### Consider:

$$\langle \psi_i | \mathbf{p} | \psi_f \rangle + \langle \psi_i | [V_{\text{nl}}, \mathbf{r}] | \psi_f \rangle = \langle \psi_i | [H, \mathbf{r}] | \psi_f \rangle = \langle \psi_i | H \mathbf{r} | \psi_f \rangle - \langle \psi_i | \mathbf{r} H | \psi_f \rangle = (\varepsilon_i - \varepsilon_f) \langle \psi_i | \mathbf{r} | \psi_f \rangle + \varepsilon_i \langle \psi_i | \Delta S \mathbf{r} | \psi_f \rangle - \varepsilon_f \langle \psi_i | \mathbf{r} \Delta S | \psi_f \rangle$$

#### And so:

$$\langle \psi_i | \mathbf{r} | \psi_f \rangle = (\langle \psi_i | \mathbf{p} | \psi_f \rangle + \langle \psi_i | [V_{\text{nl}}, \mathbf{r}] | \psi_f \rangle - \varepsilon_i \langle \psi_i | \Delta S \mathbf{r} | \psi_f \rangle + \varepsilon_f \langle \psi_i | \mathbf{r} \Delta S | \psi_f \rangle) / (\varepsilon_i - \varepsilon_f)$$

# DIELECTRIC FUNCTION OF ZNS

