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Abstract

Near edge fine structure has the potential to solve problems related to localised electronic states and bonding. Theory
and calculation provide the link between electronic or structural properties and features observed in an electron loss
spectrum. A hierarchy of approximations for the calculation of near edge structure features is introduced and the
importance of using a self-consistent charge density and potential is emphasised. The use of various electronic structure
calculation methods and their application to near edge structure calculation is reviewed. Finally, core hole effects are
discussed and examples presented for cubic BN showing that the core hole mainly enhances intensity near thres-

hold. © 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

Using high-resolution spectrometers and imag-
ing filters attached to field emission microscopes it
is now a routine matter to record spectra at a res-
olution of 1 eV. All regions of the energy loss spec-
trum show interesting new features at this level of
resolution. The fine structure features just above
the thresholds of inner shell edges are of particular
interest as they relate to a particular element in
a given environment. Materials scientists and other
microscope users all would like to make use of this

* Corresponding author. Tel.: +1-602-9656449; fax: + 1-602-
9659004.

! Current address: Atomic Simulations Group, Department of
Mathematics and Physics, Queens Unversity of Belfast Belfast,
BT7 INN, Northern Ireland.

E-mail address: peter.rez@asu.edu (P. Rez)

rich extra structure to answer significant micro-
structural questions. Although progress can be
made by comparison of spectra from the same
edges in different compounds, the full potential of
fine structure analysis can only be realised from
a theoretical understanding of the origins of the
various features. The theory can then be used as
a basis for calculation of fine structure features to
be compared with experiment. Near edge structure
can often be related to the local environment of the
excited atom and can be used to deduce inter-
atomic bond lengths and coordination. Of more
interest is the use of near edge structure as a probe
of changes in the electronic states as manifested in
the conduction band.

In the review for the last conference [1] in this
series a hierarchy of approximations in the devel-
opment of the theory of near edge structure was
presented. This hierarchy (shown in revised form as
Table 1) provides a framework for the discussion of
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Table 1

Hierarchy of approximations for near edge structure calculations

(1) Atomic theory

Basic edge shapes such as delayed maxima
Atomic multiplet theory gives 1st row transition
L; and L, or rare earth M5 and M, structures

(2) Superposition of atomic potentials or wave functions
Superposition of potentials

Greens function methods

EXAFS single scattering

XANES, old FEFF multiple scattering

(3) Electronic structure calculations—-self consistent potentials
Muffin tin methods

Greens function methods KKR + variants
Augmentation

APW, LAPW, FLAPW LMTO, ASW

(4) Core-hole effects

Z+1

Perturbative Clogston-Wolff
Supercell

Superposition of wave functions
Linear combination of atomic orbitals
(LCAO) good for molecular orbital
features on threshold

Pseudopotential methods

Plane wave pseudopotential

(need to reconstruct all e-wave function)
Pseudo-atomic orbital

subsequent developments in the calculation of near
edge structure for a number of different systems. In
particular, methods suitable for calculating near
edge structure changes for systems of importance in
materials science such as grain boundaries will be
reviewed. The increase in computing power has
also made it possible to perform more realistic
calculations of the effects of the core hole on the
excitation process.

2. Theory

Since the probability of an electron passing
through a TEM specimen loosing sufficient energy
to excite an inner shell electron is quite low, it is
sufficient to treat the scattering of fast electrons by
first-order perturbation theory and to make use of
the general expression for the differential cross sec-
tion given by [2]
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where ¢ is the wave vector, y is a relativistic correc-
tion and |i > and < f] are the initial and final

states, respectively. For simplicity the effects of dy-
namical diffraction of the fast electron will be ne-
glected and the fast electrons are treated as plane
wave. In practice for inner shell excitations up to
about 1.5kV, the characteristic scattering angle
Og is much less than the typical Bragg angle, which
means that only elastic scattering can move the
electron into a different Brillouin zone. This means
that the same energy loss spectrum will be observed
using an aperture around any Bragg spot. At higher
energies inelastic umklapp processes could be sig-
nificant, though it is doubtful that they would result
in changes in the spectrum on the scale of near edge
structure. The full theory incorporating all these
effects has been discussed by Saldin and Rez [3]
and Weickenmieir and Kohl [4] and will not be
considered further in this paper.

In most cases, in electron microscopy one can
assume that ¢-r < 1 and the exponential can be
expanded to the first order [5]. The initial state
wave functions are confined to the atomic site of the
excitation, so it is convenient to use wave functions
which are products of radial wave functions and
spherical harmonics. The angular integration over
the spherical harmonics gives the dipole selection
rules for the angular momentum quantum number
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I' =14 1. Itis then convenient to write the differen-
tial cross section as
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where m; is the matrix element for transitions to
final state with angular momentum 1, and p, is the
density of states for that particular final state. The
dipole approximation should be acceptable for
scattering up to 2 A~! which corresponds to an
angle of about 8 mrad at 200 kV. Since the square
of the matrix element in Eq. (1) is divided by q*, the
contribution of the higher order non-dipole terms
is considerably suppressed and the dipole approxi-
mation is quite acceptable for apertures up to
20-30 mrad at 200-300 kV. Non-dipole effects are
only observed with great difficulty using small dis-
placed apertures.

In most cases the matrix elements vary slowly
with energy and so the near edge structure repres-
ents the angular momentum resolved density of
empty states at the site of the excitation. For
example a K shell excitation probes p states, and an
L,; excitation would probe a combination of s and
d states, depending on the matrix elements.

The wave function for the initial state is an
atomic wave function, and can be generated from
any suitable Hartree-Fock program, though it is
better to use the same atomic program which gen-
erates the charge densities or potentials needed as
a starting point in the calculation of the final states.

As stated in the last review the differences
between theories are all confined to the unoccupied
final state wave function. A summary of the various
models for the final state wave function is given as
Table 1.

The simplest wave function for the final state is
an atomic wave function which takes the form of
a outgoing spherical wave. Only the delayed maxi-
ma which arise from the centrifugal barrier in the
potential are predicted with none of the fine struc-
tures due to neighbouring atoms [6]. In fact, the
theory is completely given by the matrix element
terms of Eq. (2).

In the next level of approximation an attempt is
made to take account of the effects of neighbouring

atoms. This could be done using techniques such as
linear combination of atomic orbitals (LCAO) in
a molecular cluster for example [7], though most
theories are based on the use of Greens functions to
describe propagation of an ejected electron from
one atom to the next. The scattering from the atom
(ion) cores is then represented by phase shifts. Ex-
tended fine structure beyond 20-30 eV above thre-
shold is described by a single reflection from
a neighbouring atom, which gives structures of the
form of a combination of sine waves. The tech-
niques for analysis of this region are well developed
and are reviewed by Teo and Joy [8]. When more
scattering pathways are considered the near edge
structures can be calculated. This is the basis of the
XANES method [9] and the early versions of the
FEFF code [10]. The key approximation at this
level is that the potential for the ejected electron is
simply a superposition of atomic potentials and no
attempt has been made to take account of any
changes such as charge redistribution that arises
from bonding. Calculations based on these
methods can therefore give no information on the
changes in the near edge structure that arise from
electronic structure or bonding. They can still be
useful for understanding how peak sizes and
positions change for the same atom with different
nearest-neighbour coordinations in different
environments. As there is an extensive literature
on both extended fine structure and XANES we
shall not give any examples of such calculations
here.

The next level of approximation involves
generating a self-consistent potential from a ground
state charge density and then using this potential
to calculate the excited state wave functions and
relevant densities of states. For small molecules a
Hartree-Fock approach might be used, whereas for
solids it is customary to use density functional
theory as developed by Hohenberg and Kohn [11]
and Kohn and Sham [12]. Rather than work with
a many-electron wave function the Shrodinger
equation is solved in terms of the ground state
charge density which is expressed as a sum of con-
tributions from orthonormal functions.

n(r) = 2 Y. 3)
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The Shrodinger equation is
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where e*n(r')/(4neolr — ¥|) describes the direct
Coulomb energy from electron-electron interac-
tions known as the Hartree energy and
{0Exc[n(r)]/on(r)} describes the energy from elec-
tron exchange and correlation. The many electron
problem has been reduced to a set of non-interac-
ting single particle equations. Unoccupied state
wave functions may also be calculated in this for-
malism. It is not intrinsically obvious that these are
the wave functions that should be used to calculate
the energy loss spectrum as given by Eq. (2). In
practice agreement with experiment is enough to
justify using the Kohn-Sham eigenfunctions and
Godby et al. [13] have shown the difference be-
tween the Kohn-Sham eigenvalues and the correct
quasi-particle energies can be accounted for a rigid
shift of the conduction band, at least for silicon. For
the purposes of calculating energy loss spectra this
amounts to shifting the origin on the energy axis,
which is usually considered to be a legitimate way
of achieving better agreement between theory and
experiment! However, work on other materials
shows that this simple rigid shift is not a universal
prescription. The practical calculation still requires
some formal expression for the exchange and cor-
relation energy. The simplest thing is to substitute
the equivalent value for a free electron gas of the
same electron density, the so-called local density
approximation (LDA). This works quite well for
many systems but is not appropriate where inter-
esting effects arise from spin coupling to the core
hole which gives the rich multiplet structure
observed in transition metal L,; and rare earth
M, edges, or where spin coupling between neigh-
bouring atoms is important, as for example in the
theoretical description of magnetism.

Having settled on the Kohn-Sham equations
under the local density approximation it is then
only a matter of deciding on which technique
should be used to solve them. All methods rely on

using Blochs theorem which states that the wave
function in a periodic solid has the form

Yilr) = exp (ik = ruy (). (5)

The initial atomic charge densities (taken from
a Hartree-Fock program such as Herman Skillman
[14]) are combined to form an initial estimate of
the charge density. An iterative scheme is construc-
ted in which the occupied wave functions are used
to calculate a new charge density which is mixed
with the previous charge density for use in the next
iteration. Convergence is assumed when the total
energy is minimised. The final ground state charge
density is used to calculate the energy bands and
wave functions for the unoccupied states. To accu-
rately reproduce structures in the density of states
the calculation has to be performed with many
more k points than the calculation of the ground
state charge density. There is no reason, in prin-
ciple, why different computer codes might not be
used for these two independent steps.

The most convenient methods to use for the
calculation of energy loss localised projected dens-
ities of states are those that already work with
a localised basis such as the muffin tin methods.
Spherical muffin tins surround each atom and in
the region of the spherical muffin tins the solution is
expressed as a product of a radial wave function
and spherical harmonics. It is a simple matter to
extract the relevant projected density of states at
a particular site. One muffin tin method, the KKR
method, is very similar to the XANES and EXAFS
schemes described above. The region between the
muffin tins has a constant potential and Greens
functions can be used to describe propagation from
one atom to the next. We have found that a variant
of this method, the Layered KKR method (LKKR),
due to Maclaren and colleagues [15] is particularly
useful for investigating near edge spectra, especially
in systems with grain boundaries. As the name
implies the system is divided into layers. Scattering
within the layer is treated by the spherical wave
Greens functions as in EXAFS or XANES, scatter-
ing between the layers is described using plane
waves. It is possibly to solve “exactly” for bulk
regions and to build up complicated interfaces with
bulk on either side.
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Fig. 1. Comparison of LKKR calculation of oxygen K edge
from the rutile form of TiO, (solid line) with the experiment
(dashed line).

An example of an LKKR calculation for the
oxygen K edge in the rutile form of TiO, is given as
Fig. 1. Note that the calculation shows the molecu-
lar orbital t,, e, splitting of about 1eV at the
threshold. This cannot be reproduced by a Greens
function multiple scattering calculation that does
not use the self-consistent charge density, as shown
in our prior publication [1]. Fig. 2 shows the results
for the oxygen K edge in a perovskite material,
SrTiO;. There is good agreement between this and
the experimental measurements which are not
shown in the figure. Other examples are given in
a recent publication [16]. As the KKR method is
identical to EXAFS and XANES for higher ener-
gies above threshold, it should reproduce those
features as well as describe the near edge region.

Many workers feel that the main disadvantage
with the KKR method is the use of a constant
potential between the muffin tins. It is felt that this
is inadequate for materials with directional bonds,
though the success of the calculation for the oxygen
K edge in rutile would suggest otherwise. The Aug-
mented Plane Wave (APW) method is a muffin tin
method where this deficiency can be corrected. The
APW method uses plane waves to describe the
wave function in the region between the muffin tins.
When using a plane wave expansion the interstitial
potential can be expressed as a Fourier series which

Intensity

3

0 T T T T

-10 0 10 20 30 40
eV

Fig. 2. LKKR calculation of the O K edge from strontium
titanate.

allows for arbitrary bonding charge distributions.
This version of the APW method is known as a full
potential APW. The problem with APW for band
structure and density of states calculations is that
a large matrix must be diagonalised at each energy.
This is computationally very expensive and Ander-
son came up with a simplification in which a com-
bination of the Hamiltonian matrix at one energy
and its energy derivatives were used instead [18].
The result is called a linearised APW and a combi-
nation of full potential and linearised APW (ab-
breviated to FLAPW) is available as a standard
package [17]. The linearisation scheme was also
applied to the muffin tin orbital method proposed
by Anderson which is a particularly economical
scheme for calculating electronic structures with
a minimal basis set [18]. The energy about which
derivatives are taken is usually around the centre of
the valence band which will give excellent results
for total energy and other ground state properties.
One must be cautious in applying any linearised
scheme to the unoccupied states that form the basis
of near edge structure. As Anderson pointed out,
the departures from the linear interpolation go as
(E — E,)*, where E is the energy and E, is the
approximate energy for the centre of the valence
band. This can result in significant error even be-
tween 10 and 20 eV above threshold. LAPW and
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Calculated L2,3 near-edge structures

LAPW Method
0.6 -

{ — Ni3Aibulk
il === Ni-enriched Ni3Al
0.5 | "1 e Ni-enriched Ni3Al with B

0.4 ¢
03
0.2

0.1

850 855 860 865
Energy above threshold (eV)

Fig. 3. LAPW calculation of the Ni L; edge from bulk NizAl
(solid line), a pure Ni plane in (dashed line), and Ni atoms in the
Ni rich plane with interstitial B.

related methods will do well for the detailed shape
just above threshold. An example which also shows
how calculations can support interpretation of ex-
perimental results is given as Fig. 3. FLAPW calcu-
lations of Ni L3 edge are shown for bulk NisAl at
the site of a pure Ni layer in a Ni3Al supercell and
also at the site of the same layer when boron is
added. Similar results were obtained with the
LKKR method. The height of the peak at threshold
goes up for pure Ni, but is reduced to the level of
the peak from Ni in bulk NizAl when Boron is
added. These calculations show agreement with the
experimental results of Muller [19] who investi-
gated EELS fine structure for boundaries in NizAl
with and without B segregation.

Devising a method that can handle the deep
potential wells of the ion cores at the atomic sites
and the relatively flat regions between them has
always been a problem in the calculation of elec-
tronic structure. Plane waves have many advant-
ages in electronic structure calculations, notably
the simplicity of the theory and any computer pro-
grams based on that theory. In the ion cores many
plane waves would be required to successfully rep-
resent the wave function. Separating the ion cores
as muffin tins is one solution. Another approach is

to replace the ion core potential with another po-
tential, the so-called pseudopotential, made up
from the nuclear potential and a contribution from
the core electrons. It is assumed that the core does
not change when the atom moves from one envi-
ronment to another. The advantage is that the
potential is smoother, the valence electron wave
functions, now pseudowavefunctions, can be made
nodeless and can be described by a relatively small
number of plane wave components. It does not
matter that pseudowavefunctions are used when
calculating many of the ground state properties
such as total energy. It is also relatively straightfor-
ward to implement schemes for both ionic and
electronic relaxation with plane wave pseudopoten-
tial codes allowing for the theoretical explanation
of the stability of different crystal structures. Recent
developments such as ultra-soft pseudopotentials
have extended the range of elements and it is now
possible to treat systems with thousands of atoms
using modern plane wave codes [20]. For calculat-
ing near edge structure we need the local angular
momentum projected density of states so it is essen-
tial to recreate the true wave function from the
pseudowavefuction. Following the approach of van
der Walle and Blochl [21] the pseudowavefunction
need only be corrected within a sphere of radius 7.
The all electron wave function is given by

W = 10> + X (190> — 1B, (6)

where |d;> and |@;) are the partial waves for the full
and pseudopotentials, respectively, normalised
within r., and [/> and |/ are the all-electron wave
function and pseudowavefunction

In practice it is easier to directly calculate the
dipole matrix elements

Cplriry = Lelril> + 3 (pelrld
— L DTNl (7)

rather than try to resolve angular momentum com-
ponents.

Another approach is to use pseudopotentials,
but still retain the atomic orbital character of the all
electron wave function as a combination of
pseudo-atomic orbitals [22]. These are already
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labelled by angular momentum quantum number
and the relevant local angular momentum projec-
ted density of states can then be calculated directly.
This approach has been used in our previous work
where near edge structures for diamond, graphite,
boron nitride and silicon carbide were published
[23]. The major problem with pseudo-atomic or-
bitals is that they do not form a complete set of
states at high energies in the conduction band. The
method is therefore unable to give reliable results
for the transition between the near edge region and
the extended fine structure region, starting at about
10 eV above threshold.

The final level of approximation in the hierarchy
is to attempt to take account of the dynamics of the
excitation process. It is safe to assume that the time
for the excitation is fast compared to the relaxation
time for the lattice. It is therefore only necessary to
consider the electronic states in the presence of the
core hole. In a metal where charge flows freely
a core hole will have negligible effect as it will be
fully screened. For insulators where screening is less
effective conduction band states will be pulled
down in energy and the wave function will be
contracted. This will lead to a shift towards lower
energies and an increase in the size of any threshold
peaks. One way to include core hole effects in
a calculation is to assume that any local change in
potential is perturbative. An example is the Clog-
ston—-Wolff method in which the effect of the core
hole is parameterised by the depth of the core-hole
potential and the degree of hybridisation between
orbitals [24]. Another popular approach is to take
account of the absence of the core electron by
adding one to the nuclear charge, the Z + 1 ap-
proximation. In calculations where a supercell is
already being used to investigate near edge struc-
ture around defects such as boundaries (an example
would be the calculation for the Ni L, edge for the
grain boundaries described above), then it is no
more difficult to replace the atom at the excitation
site with an atom with the appropriate core elec-
tron missing. The electronic structure calculation is
then performed and the appropriate local density of
states calculated. With the pseudopotential method
this is not entirely a trivial exercise as a new set of
pseudopotentials have to be calculated. Examples
are given as Fig. 4 for the boron and nitrogen

—— EELS data
——— No core hole

! \_r./f“\\.“_/""\—

: . . N . ; . . L .

-5 0 5 10 15 20 25 30 35 40 45 50 55 60
Energy/eV

—— EELS data
—— No core hole

\ 3 -~ \
3 VoA R
N A VT
L . L . T
-5 0 5 10 15 20 25 30 35 40 45 50 55 60
Energy/eV

Fig. 4. Plane wave psudopotential calculations for B and
N K edges from cubic BN compared with EELS data. The
dotted line shows the results of a calculation without a core hole,
the dashed line shows the effects of the core hole.

K edges in cubic boron nitride. The calculation
without the core hole is very similar to the earlier
pseudoatomic orbital calculations reported by
Weng et al. [23]. As expected the core hole enhan-
ces the spectrum peak at threshold. It is interesting
to note that this accounts for nearly all the discrep-
ancy between the earlier calculation and experi-
ment in this region. However, comparison with
experiment shows that the relative height of the
first spectral peak is too large. This suggests that
the model overstates core-hole effects and that
screening is more important in this system.
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3. Conclusions

The detailed calculation of near edge structure
attempting to match every feature of experimental
measurements is clearly an arduous, maybe even
a hopeless, task. We have shown how theory and
calculation can aid in the understanding of near
edge fine structure, by showing what features arise
from a given level of approximation in the theory,
and how they change with respect to calculation
parameters. The hierarchy of approximations pro-
posed in previous work is shown to still provide
a useful framework for the analysis of near edge
structures.

The atomic description only provides a picture of
the slow variation of edge shape due to delayed
maxima. The next level of approximation, where
interaction with neighbouring atoms is considered
but no attempt made to describe bonding, can only
reproduce features related to coordination and in-
teratomic distances. A LCAO approach can give
useful qualitative ideas on the near edge region, but
is hard to extend into the extended fine structure
region or to extract quantitative information. To
capture the subtleties of near edge structure that
could arise from details in bonding and electronic
structure a true self-consistent calculation of
ground state charge density and unoccupied elec-
tronic states is required. Any of the methods of
electronic  structure calculation based on
Kohn-Sham equations of density functional theory
can potentially be used. The method chosen should
reflect the nature of the problem and convenience
of use. We have found that the LKKR method,
which can be formally related to the EXAFS and
XANES methods, is particularly well suited to near
edge structure calculations in problems involving
atoms at boundaries. It can describe fine structures
both in the threshold and the extended fine struc-
ture region, the main disadvantage being a limita-
tion to spherical muffin-tin potentials. Although
this is not serious for metals it could cause prob-
lems in materials with highly directional bonds
such as semiconductors. An interesting solution to
this problem might be to use a Greens function
method for the calculation of the near edge struc-
ture based on the self-consistent potential from
FLAPW. Recent developments of the plane wave

pseudopotential method also show promise for cal-
culating the whole range of fine structure in a wide
selection of materials.

When all these steps have been taken it might
then be necessary to include core-hole effects, which
is best done using a supercell. This might involve
only marginal extra computational cost if a super-
cell is already being used, as in a surface or bound-
ary problem. In the examples presented here the
main effect of the core hole is to enhance the inten-
sity of the threshold peak and also pull it towards
lower energies.

This does not mean that near edge structure
calculation is a routine activity, to be compared
with high-resolution image simulation. Even when
using standard electronic structure calculation
programs there are still many issues to be
addressed on parameter choice and calculation
convergence. Different methods work best for dif-
ferent systems and judicious choices must be made
even with a generous allotment of computer time.
There are still important systems such as quartz
and related silicates where calculations are still not
good enough to be useful in explaining the interest-
ing and rich fine structures.
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