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Second-order k"p perturbation theory with Vanderbilt pseudopotentials and plane waves

C. J. Pickard* and M. C. Payne
TCM, Cavendish Laboratory, Madingley Road, Cambridge, CB3 0HE, United Kingdom

~Received 2 February 2000!

Thek•p expressions for the gradient and curvature~and hence effective masses! of electronic energy bands
in reciprocal space are presented for calculations involving nonlocal and non-normconserving Vanderbilt
ultrasoft pseudopotentials@D. Vanderbilt, Phys. Rev. B41, 7892 ~1990!#. The expressions have been imple-
mented, and comparison with numerically calculated gradients and curvatures show that they are practical,
accurate, and useful in the calculation of electronic densities-of-states.
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I. AN INTRODUCTION TO k "p PERTURBATION
THEORY

The central idea behindk•p perturbation theory also lie
at the heart of any attempt to understand the electronic b
structure of a periodic system. As a resultk•p perturbation
theory has been taught for many years to students of so
state physics.1 This idea is that the knowledge of the wav
functions and energy levels at any given point in the B
louin zone implies knowledge of the band structure in
region surrounding that point. It resurfaces in modern d
approaches to efficient electronic structure calculations.2 Im-
plicit in this is the concept that quantities such as band
ergies and matrix elements vary smoothly throughout
Brillouin zone. This behavior is crucial to any attempt
calculate properties that require integrations over the B
louin zone.

k•p perturbation theory has a long history, stretchi
back to the early days of electronic structure theory of
solid state.3 It was initially used partly as a pedagogic
tool—for learning about the form of the electronic ban
before calculated band structures became widely availa
But by far the most important use of the method was a
tool in the parameterization of bands using, as data, exp
mental observables such as effective masses, oscil
strengths, and band gaps. The hope was to learn abo
much of the band structure as possible from the restric
experimental data available, and also to produce a com
representation of the band structure.4,5 Recentlyk•p pertur-
bation theory has not been so widely used, but it has, h
ever, found a home in the transport theory of heterostructu
~it enables effective masses to be calculated! and Robertson
and Payne6 applied it to total-energy calculations using loc
pseudopotentials.

Possibly it is now time to return to the original spirit i
which the theory was used. The output of the relatively
pensive plane-wave pseudopotential calculations can
thought of in the same way as restricted experimental dat
data from which the maximum information about the ba
structure is to be extracted, and a compact representatio
to be produced. Kane4 may have predicted this when h
wrote:

‘‘ . . . Perhaps a judicious combination of thek•p and
pseudopotential methods will nevertheless provide the u
mate in accuracy. . . . ’’
PRB 620163-1829/2000/62~7!/4383~6!/$15.00
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In pursuit of this end, we present here thek•p expressions
to be used in the case of a Hamiltonian based
Vanderbilt’s nonlocal and non-normconserving ultras
pseudopotentials.7,8 The use of these potentials, while lea
ing to efficient and accurate results, introduces some com
cations in comparison to a purely local Hamiltonian
namely, the Hamiltonian no longer commutes with the po
tion operator and the eigenproblem is generalized.

In Sec. II we derive the required expressions for thek•p
perturbation theory, and in Secs. III and IV we describe
details of their practical implementation. In Sec. V w
present some tests of our implementation. Finally, in Sec.
k•p perturbation theory is discussed in terms of its util
and a desirable future development is outlined.

II. THE k "p APPROACH TO THE QUADRATIC
REPRESENTATION OF A BAND

The Taylor expansion of an energy band around a po
k0 in the first Brillouin zone is

En~k01q!5En~k0!1An
Tq1

1

2
qTBnq1•••, ~1!

whereA andB are given by

An,a5
]En~k!

]ka
U

k0

Bn,ab5
]2En~k!

]ka]kb
U

k0

. ~2!

We wish to findA and B in terms of the eigenspectrum o
the Hamiltonian evaluated atk0.

A. Generalized first- and second-order perturbation theory

In order to find the variation of band energies in the
cinity of a givenk point we turn to the first- and second
order perturbation theory for the generalized eigenproble
ĤuC&5EŜuC&. Since this generalized perturbation theo
has not been widely published, a brief derivation is presen
below. We shall write the perturbation to second order a

Ĥ→Ĥ1lDĤ (1)1l2DĤ (2), ~3!

Ŝ→Ŝ1lDŜ(1)1l2DŜ(2).

The perturbed wave function may be written as
4383 ©2000 The American Physical Society
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uCn&5ufn
(0)&1 (

kÞn
Cnk~l!ufk

(0)&, ~4!

where Cnk(l)5lCnk
(1)1l2Cnk

(2)1••• and $ufn
(0)&% are the

eigenfunctions of the unperturbed Hamiltonian,Ĥufn
(0)&

5En
(0)Ŝufn

(0)&. The perturbed eigenvalue isEn(l)5En
(0)

1lEn
(1)1l2En

(2)1•••. We may now write the perturbe
eigenexpression as:

@Ĥ1lDĤ (1)1l2DĤ (2)#

3F ufn
(0)&1 (

kÞn
lCnk

(1)ufk
(0)&1l2Cnk

(2)ufk
(0)&1•••G

5@En
(0)1lEn

(1)1l2En
(2)1•••#

3@Ŝ1lDŜ(1)1l2DŜ(2)#

3F ufn
(0)&1 (

kÞn
lCnk

(1)ufk
(0)&1l2Cnk

(2)ufk
(0)&1•••G .

~5!

Equating powers ofl and usingĤufn
(0)&5En

(0)Ŝufn
(0)& we

obtain:

(
kÞn

Cnk
(1)Ek

(0)Ŝufk
(0)&1DĤ (1)ufn

(0)&

5En
(0)(

kÞn
Cnk

(1)Ŝufk
(0)&1En

(1)Ŝufn
(0)&1En

(0)DŜ(1)ufn
(0)&.

~6!

If we now apply ^fn
(0)u to the left, using^fn

(0)uŜufm
(0)&

5dnm , we are left with

En
(1)5^fn

(0)uDĤ (1)2En
(0)DŜ(1)ufn

(0)&. ~7!

Similarly, operating on the left witĥfm
(0)u, where mÞn,

gives the coefficientsCnm
(1) :

Cnm
(1)5^fm

(0)uDĤ (1)2En
(0)DŜ(1)ufn

(0)&/~En
(0)2Em

(0)!. ~8!

And now, for the second-order change in the energy,
must equate powers ofl2, again using Ĥufn

(0)&
5En

(0)Ŝufn
(0)&.

(
kÞn

Cnk
(2)Ek

(0)Ŝufk
(0)&1 (

kÞn
Cnk

(1)DĤ (1)ufk
(0)&1DĤ (2)ufn

(0)&

5En
(0)(

kÞn
Cnk

(2)Ŝufk
(0)&1En

(0)(
kÞn

Cnk
(1)DŜ(1)ufk

(0)&

1En
(0)DŜ(2)ufn

(0)&1En
(1)(

kÞn
Cnk

(1)Ŝufk
(0)&

1En
(1)DŜ(1)ufn

(0)&1En
(2)Ŝufn

(0)&. ~9!

If we apply ^fn
(0)u to the left we obtain an expression for th

second-order change in the energy:
e

En
(2)5 (

kÞn
Cnk

(1)^fn
(0)uDĤ (1)2En

(0)DŜ(1)ufk
(0)&

2En
(1)^fn

(0)uDŜ(1)ufn
(0)&

1^fn
(0)uDĤ (2)2En

(0)DŜ(2)ufn
(0)&. ~10!

B. The k"p perturbation

In order to use these expressions we must now find
effective perturbation due to taking a small step in recipro
spacedk. A Bloch wave function may be written as,

uCn
k&5eik•ruUn

k&, ~11!

whereuUn
k& is a cell periodic function. IfĤuCn

k&5En
kŜuCn

k&
then e2 ik•rĤeik•ruUn

k&5En
ke2 ik•rŜeik•ruUn

k& and so the
k-dependent Hamiltonian and overlap matrices are

Ĥ~k!5e2 ik•rĤeik•r, ~12!

Ŝ~k!5e2 ik•rŜeik•r. ~13!

The perturbation is given by Taylor expanding the expon
tials to second order for smalldk,

DĤ~k!5Ĥ~k1dk!2Ĥ~k!

5e2 ik•rS i @Ĥ,dk• r̂ #2
1

2
@@Ĥ,dk• r̂ #,dk• r̂ #

1O~dk3! Deik•r. ~14!

And similarly,

DŜ~k!5Ŝ~k1dk!2Ŝ~k!

5e2 ik•rS i @Ŝ,dk• r̂ #2
1

2
@@Ŝ,dk• r̂ #,dk• r̂ #

1O~dk3! Deik•r. ~15!

Thus, to second order in the stepdk, we can identify the
terms in Eqs.~7! and ~10! as

DĤ (1)2En
(0)DŜ(1)5 i @Ĥ2En

(0)Ŝ,q̂• r̂ #,

DĤ (2)2En
(0)DŜ(2)52

1

2
@@Ĥ2En

(0)Ŝ,q̂• r̂ #,q̂• r̂ #. ~16!

In the above,dk has been written aslq̂, whereq̂ is a unit
vector in reciprocal space.

C. The band gradients and curvatures

The gradients and curvatures of the bands may now
evaluated since we have, in Eqs.~7!, ~10!, and ~16!, an ex-
pression for the band energy up to second order in sm
steps aboutk0. If we use the notation,

Pnm
a 5^fm

(0)u i @Ĥ2En
(0)Ŝ, r̂ a#ufn

(0)&, ~17!
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then the band gradient in reciprocal space may be written

]En

]ka
5Pnn

a , ~18!

and the curvature as,

]2En

]kb]ka
52^fn

(0)u i @@Ĥ2En
(0)Ŝ, r̂ a#, r̂ b#ufn

(0)&

2Pnn
a ^fn

(0)u i @Ŝ, r̂ b#ufn
(0)&

2Pnn
b ^fn

(0)u i @Ŝ, r̂ a#ufn
(0)&

1 (
kÞn

Pnk
a Pnk

b* 1Pnk
b Pnk

a*

En
(0)2Ek

(0)
. ~19!

Equations~18! and ~19! are derived by simply taking the
reciprocal space derivatives of the second-order energy
pression.

III. THE COMMUTATORS

The electronic HamiltonianĤ may be written as,

Ĥ52
\2¹2

2m
1V̂, ~20!

whereV̂ is the self-consistently calculated potential. Assu
ing for the moment that@V̂, r̂ #50, which is the case for a
purely local potential, then we need to evaluate the follow
commutators that appear in the expressions for the band
dients and curvatures above:

i @Ĥ, r̂ i #5 i F2
\2

2m
¹2, r̂ i G5

\

m
p̂i ,

@@Ĥ, r̂ i #, r̂ j #5F F2
\2

2m
¹2, r̂ i G , r̂ j G52

\2

m
d i j . ~21!

The operatorp̂ is the momentum operator, from which th
name ‘‘k•p’’ is derived. Using these expressions for th
commutators, thek•p expansion agrees with standard e
pressions found elsewhere.1 There are however two situa
tions in which the commutators are not so straightforwa
One is in the case of incomplete of basis sets, which has b
examined by Boykin.9 In the plane-wave basis the bas
functions are eigenstates of the momentum operator,
these complications disappear. The other source of com
cation is more obvious, and concerns the use of nonlo
pseudopotentials. The effect of nonlocal pseudopotential
thek•p expansion does not appear to have been treated
viously, although the first-order correction is closely co
nected to the correction required for the calculation of dip
optical transition matrix elements in reciprocal space.10 This
is an important omission given the prevalence of such po
tials in modern electronic structure calculations. In gene
the pseudopotential can be divided into local and nonlo
components,

V̂5V̂l1V̂nl , ~22!
s,
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and so the full expressions for the commutators will be,

i @Ĥ, r̂ i #5
\

m
p̂i1 i @V̂nl , r̂ i #, ~23!

or what is known as the velocity operator, and the dou
commutator,

@@Ĥ, r̂ i #, r̂ j #52
\2

m
d i j 1@@V̂nl , r̂ i #, r̂ j #. ~24!

The modifications due to the nonlocality of the potential a
generally nonzero, and there are similar expressions for
commutators of theŜ operator, which deviates from th
identity in the ultrasoft pseudopotential case and is nonlo
in the same manner as the potential.

IV. EVALUATION OF THE k "p MATRIX ELEMENTS

The matrix elements of the form̂Cn
ku p̂i uCm

k & can be ef-
ficiently evaluated in reciprocal space since the plane wa
making up the basis are eigenstates of the the momen
operator, and hence the operatorp̂ is diagonal. If the nonlo-
cal part of the potential is in separable form~which is com-
mon due to its computational efficiency! then it may be writ-
ten, following Vanderbilt,7 as,

V̂nl5(
n,m

ubn&Dnm^bmu, ~25!

and theŜ operator is,

Ŝ511(
n,m

ubn&qnm^bmu. ~26!

The ubn& are atomiclike projectors localized within the s
called core radius of the pseudopotential. In the case
Vanderbilt’s pseudopotentials, they are constructed so
^bnufm

ps&5dnm , where ufm
ps& are the atomic pseudowave

functions. TheDnm can be thought of as the strength of th
nonlocal potential in each angular momentum channel,
the qnm are related to the charge deficiency within the co
radius due to the decision not to apply the norm conserva
constaint during the construction of the Vanderbilt pseu
potentials. Clearly, if theqnm are set to zero, the form of th
nonlocal potential is just that of standard separable nonlo
norm-conserving pseudopotentials sinceŜ reduces to the
identity operator.

This means that we must evaluate matrix elements of
form ^bu r̂ i uCn

k& and ^bu r̂ i r̂ j uCn
k&. These matrix elements

may also be evaluated in reciprocal space in the follow
way. Consider the matrix element^bueiq• r̂ uCn

k&, for smallq:

^bueiq• r̂ uCn
k&5^buCn

k&1 i ^buq• r̂ uCn
k&2

1

2
^buuq• r̂ u2uCn

k&

1O~q3!. ~27!

Now, let q5(q,0,0), then

^bueiqr̂ 1uCn
k&2^bue2 iqr̂ 1uCn

k&52iq^bu r̂ 1uCn
k&1O~q3!,

~28!
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TABLE I. The electronic band gradients of the first four bands of diamond at thek point ~0.48,0.23,0.38!
in reciprocal lattice vectors. The calculations were performed for the primitive cell, at a plane-wave cu
600 eV and 360 bands in the normconserving case and 280 eV and 116 bands in the ultrasoft case. T
of the band gradients are in eV Å.

Gradient Band Normconserving Ultrasoft
Direction x y z x y z

Numerical derivative 1 6.2053 3.1345 1.2353 6.1550 3.1181 1.2
2 23.8210 25.3539 26.8463 23.8193 25.3681 26.8659
3 24.6409 23.0813 5.9605 24.6426 23.0900 5.9874
4 26.6917 1.6231 0.662326.7471 1.6312 0.6532

Perturbation theory 1 6.2053 3.1345 1.2353 6.1550 3.1181 1.2
2 23.8210 25.3539 26.8463 23.8193 25.3681 26.8659
3 24.6409 23.0813 5.9605 24.6426 23.0900 5.9874
4 26.6917 1.6231 0.662326.7471 1.6312 0.6532
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and so on. In a similar way, the matrix elements required
the double commutator may be found. Again, letq
5(q,0,0), then

^bueiqr̂ 1uCn
k&1^bue2 iqr̂ 1uCn

k&22^buCn
k&

52q2^bu r̂ 1
2uCn

k&1O~q4!, ~29!

and so on. The cross terms~i.e., r̂ 1r̂ 2 etc.! are obtained as
follows. Let q5(q,q,0), then

^bueiq( r̂ 11 r̂ 2)uCn
k&1^bue2 iq( r̂ 11 r̂ 2)uCn

k&22^buCn
k&

52q2~^bu r̂ 1
2uCn

k&1^bu r̂ 2
2uCn

k&12^bu r̂ 1r̂ 2uCn
k&!

1O~q4!, ~30!

and so, using Eq.~29!, ^bu r̂ 1r̂ 2uCn
k& can be extracted. Given

that the electronic structure method used must already h
routines for evaluatinĝbuCk

n&, the advantage of this metho

is that evaluatinĝ bueiq• r̂ uCn
k& simply involves small shifts

in the grid in reciprocal space on whichub& is calculated.
This avoids tiresome evaluation of new spherical harmo
projectors, and this approach is readily extended to hig
order. The size ofq is chosen to be small enough for th
r

ve

ic
er

O(q3) andO(q4) terms to be negligible, but large enough
avoid errors due to precision limitations.

V. TESTS OF THE k"p METHOD

After deriving expressions for the electronic band gra
ents and curvatures, it remains to show that these express
can be implemented practically. To demonstrate this, t
tests are presented. The first is a straightforward compar
with numerically calculated derivatives, and the second de
onstrates a practical application of the theory.

A. Numerical evaluation of gradients and curvatures

The electronic band gradients and curvatures may be
culated numerically by simply taking small steps in recipr
cal space. However, such numerical derivatives can be d
cult to converge with respect to the step size. Accura
requires small step sizes, but this, in turn, leads to sm
energy differences and an extreme sensitivity to errors
these energies. This is a particular problem for the iterat
rather than direct, diagonalization techniques commo
used in plane-wave codes. A further problem is that of ba
crossing.11 If the derivatives are sought about ak point for
which some bands are degenerate, the numerical deriva
the
in

2

1

TABLE II. As in Table I, but here the curvature in the direction of the three principal axes of
curvature tensor is presented. The units of curvature are eV Å2, and the curvature for a free-electron band
the same units is 7.62 eV Å2.

Curvature Band Normconserving Ultrasoft
Direction 1 2 3 1 2 3

Numerical derivative 1 3.40 5.41 5.67 3.49 5.37 5.6
2 23.68 3.71 5.54 23.57 3.75 5.58
3 220.35 2.17 6.03 220.22 2.16 6.00
4 26.72 20.67 12.04 26.70 20.69 11.95

Perturbation theory 1 3.40 5.41 5.67 3.49 5.37 5.6
2 23.68 3.71 5.53 23.57 3.76 5.58
3 220.33 2.16 6.03 220.20 2.15 6.00
4 26.70 20.67 12.01 26.67 20.68 11.93
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become ill defined. For this reason, the test case of diam
presented here in Tables I and II is a calculation perform
about anonspecialk point. In order to test that the numeric
and k•p derivatives are equivalent—as they should be
almost the entire eigenspectrum has been included in
perturbation summation of Eq.~19!. In practical applications
such accuracy will be rarely required. The result of this t
is positive, in that the deviations between the numerica
and perturbationally calculated derivatives presented
Tables I and II might reasonably be assigned to numer
imprecisions rather than some error in Eqs.~18! and~19!, or
in the implementation. In fact, to the number of significa
figures presented, the gradients are identical.

B. Calculation of electronic density-of-states

The motivation for this extension ofk•p perturbation
theory was the generation of a piecewise quadratic repre
tation of electronic bands for use in the second-order
trapolative Brillouin-zone integration scheme describ
previously.11 In Fig. 1 we show the total density-of-states
diamond, using gradients and curvatures calculated with
expressions presented here and the extrapolative integr
scheme. A fairly low number ofk points ~16 in the irreduc-
ible wedge of the primitive cell of diamond! have been used
in order to emphasize any differences in the gradients
curvatures in the normconserving and ultrasoft cases.

FIG. 1. The valence and conduction-band density-of-states
diamond, calculated for normconserving and ultrasoft pseudopo
tials using plane-wave cutoffs of 600 and 280 eV, respectively
total of 40 bands were included in the perturbation summation
the Fermi energy is 0 eV.
-
-

nd
d

he

t
y
in
al

t

n-
-

d

e
ion

d
is

clear that the normconserving and ultrasoft pseudopoten
results are practically identical within the valence band. T
small differences in the conduction band are due to the
ferent higher energy scattering properties of the pseudo
tentials. This is expected, since the pseudopotentials are
structed to give accurate results in the valence-band en
range only.

VI. DISCUSSION

As a crude indication of the usefulness of this extens
of k•p perturbation theory to ultrasoft nonlocal pseudopote
tials, we found that the calculation of the density-of-sta
shown in Fig. 1 was some three and a half times quicke
the ultrasoft case, compared to the calculation using no
conserving pseudopotentials. Even greater efficiency g
have been found in larger systems—a factor of 7 for
carbon polymorph described in Winkleret al.12

While the band gradients are essentially computation
cost free, thek•p perturbation theory presented here for t
band curvatures requires a summation over the en
eigenspectrum. Given the typically large size of plane-wa
bases, this is impractical in general. Currently the evalua
of these many eigenstates dominates the computational
of the method. While it is often possible to use a set
eigenstates restricted to the lower portion of the eigensp
trum, it would be desirable to reformulate this theory
terms of only those states for which we are interested in
electronic structure. It is likely that such a formulation wou
be similar to that employed by Mauriet al.13 in which the
perturbation theory including the summation is recast a
linear system and solved using conjugate gradie
minimization.14 This reformulation would result in an effi
cient and accurate approach to the calculation of band
vatures~and hence effective masses! and would be of great
interest to those who model the transport properties of h
erostructures.

In conclusion, we have derived thek•p expressions for
the gradients and curvature of the electronic energy bands
a generalized Hamiltonian, and implemented these exp
sions in the case of the widely used Vanderbilt ultras
pseudopotentials and plane waves. The results are foun
be accurate, and in combination with an extrapolat
Brillouin-zone integration scheme,11 the approach is shown
to be efficient and useful in the calculation of electron
densities-of-states.
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