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Second-order kp perturbation theory with Vanderbilt pseudopotentials and plane waves

C. J. Pickard and M. C. Payne
TCM, Cavendish Laboratory, Madingley Road, Cambridge, CB3 OHE, United Kingdom
(Received 2 February 2000

Thek- p expressions for the gradient and curvat(aed hence effective mas3es electronic energy bands
in reciprocal space are presented for calculations involving nonlocal and non-normconserving Vanderbilt
ultrasoft pseudopotential®. Vanderbilt, Phys. Rev. B1, 7892(1990]. The expressions have been imple-
mented, and comparison with numerically calculated gradients and curvatures show that they are practical,
accurate, and useful in the calculation of electronic densities-of-states.

I. AN INTRODUCTION TO k -p PERTURBATION In pursuit of this end, we present here thep expressions
THEORY to be used in the case of a Hamiltonian based on
Vanderbilt's nonlocal and non-normconserving ultrasoft
The central idea behinkl- p perturbation theory also lies pseudopotentials® The use of these potentials, while lead-
at the heart of any attempt to understand the electronic bandg to efficient and accurate results, introduces some compli-
structure of a periodic system. As a reskilip perturbation ~cations in comparison to a purely local Hamiltonian—
theory has been taught for many years to students of solidiamely, the Hamiltonian no longer commutes with the posi-
state physic$.This idea is that the knowledge of the wave tion operator and the eigenproblem is generalized.
functions and energy levels at any given point in the Bril- In Sec. Il we derive the required expressions for khe
louin zone implies knowledge of the band structure in theperturbation theory, and in Secs. Il and IV we describe the
region surrounding that point. It resurfaces in modern dayletails of their practical implementation. In Sec. V we
approaches to efficient electronic structure calculatfans- present some tests of our implementation. Finally, in Sec. VI,
plicit in this is the concept that quantities such as band enk-p perturbation theory is discussed in terms of its utility
ergies and matrix elements vary smoothly throughout thénd a desirable future development is outlined.
Brillouin zone. This behavior is crucial to any attempt to
calculate properties that require integrations over the Bril-  ||. THE k -p APPROACH TO THE QUADRATIC
louin zone. REPRESENTATION OF A BAND
k-p perturbation theory has a long history, stretching . )
back to the early days of electronic structure theory of the The Taylor expansion of an energy band around a point
solid staté® It was initially used partly as a pedagogical Ko in the first Brillouin zone is
tool—for learning about the form of the electronic bands 1
before calculated ba_nd structures became widely available. En(ko+q)=En(ko) +Alg+=q"Byg+ - - -, )
But by far the most important use of the method was as a 2
tool in the parameterization of bands _using, as data, exper{,—vhere A andB are given by
mental observables such as effective masses, oscillator

strengths, and band gaps. The hope was to learn about as IEn(K) %En(K)
much of the band structure as possible from the restricted An,a:T naB~ oK okl (2
experimental data available, and also to produce a compact “ Tk *"TB ko

rep.resentation of the band structﬁﬁaRecentlyk- P Pertur- e wish to findA andB in terms of the eigenspectrum of
bation theory has not been so widely used, but it has, how,[-he Hamiltonian evaluated &.
ever, found a home in the transport theory of heterostructures
(it enables effective masses to be calculatmud Robertson
and Payn®applied it to total-energy calculations using local
pseudopotentials. In order to find the variation of band energies in the vi-
Possibly it is now time to return to the original spirit in cinity of a givenk point we turn to the first- and second-

which the theory was used. The output of the relatively ex-order perturbation theory for the generalized eigenproblem;

pensive plane-wave pseudopotential calculations can bg|y)=EJW). Since this generalized perturbation theory

thought of in the same way as restricted experimental data -as not been widely published, a brief derivation is presented
data from which the maximum information about the bandpelow. We shall write the perturbation to second order as

structure is to be extracted, and a compact representation is
to be produced. Kaffemay have predicted this when he ASA+ANAA®+N2AR®), (3
wrote:

A. Generalized first- and second-order perturbation theory

Perhaps a judicious combination of thep and 5,81 \ASM 1 (228D
pseudopotential methods will nevertheless provide the ulti- '
mate in accuracy. ... ” The perturbed wave function may be written as
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I‘Ifn>:|¢<n°>>+k§n Crk(N)| 6, 4)

where C (A\)=ACV+2\2C@+ ... and {|¢?)} are the
eigenfunctions of the unperturbed HamiltoniaH,¢{%)
=E5 ¢, The perturbed eigenvalue i&,(\)=E{
+AEM+N2E@+ ... We may now write the perturbed
eigenexpression as:

[A+NAHM+N\2AH@)]

X

0 1 0 2 0
|# )>+k;n NCRIA) +NZCR )+ - -
=[EQ+\EP+NED+ .. .]

X[S+NASD +22A83)]

X

40+ 3, AN+ |

(5
Equating powers of and usingH|¢{?)=E?g ¢ we
obtain:

2 CRES4”) + ARD )

—EOS YU +EDS ) + EPASY 0).

©6)

If we now apply (¢?)| to the left, using(#{”|S4{)
= Shm, We are left with

ER=(o | ARD—EPASD]¢(). (7)

Similarly, operating on the left with ¢{%)|, where m#n,
gives the coefficient€ (L) :

CO=(pQVAHD—EQASD| O (EP-ED). (8)

And now, for the second-order change in the energy, w

must equate powers of\% again using H|4()
“EPE4),

S, CRELS )+ 3, CRARDI4) + AR i)
=EP Y CRY¢)+EP S CRASD|¢(?)
k#n k#n
FEDAS 4O+ EDS, CRE )

+EDASY40) +EPS 410). ©

If we apply (#{")| to the left we obtain an expression for the
second-order change in the energy:
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E=3, COUAIARD-EPAS|4f?)

—EM(D]ASD] 0y

+(oNARP—EPAS| 1), (10

B. The k-p perturbation

In order to use these expressions we must now find the
effective perturbation due to taking a small step in reciprocal
spacedk. A Bloch wave function may be written as,

[wpy=e"Tup), (1D

where|UK) is a cell periodic function. 4| ¥X)=EkSwk)
then e THe*"|UK)=EKe *'Se'k "|UX) and so the
k-dependent Hamiltonian and overlap matrices are
H(k)=e rRelkr, (12)
S(k)y=e 'k rSelkr, (13

The perturbation is given by Taylor expanding the exponen-
tials to second order for smadk,

AH(K)=H(k+ 8k)—H(k)

=e—ik~f(i[|3|,5k.F]—%[[H,ak.F],ak-F]

+O(5k3))e””. (14
And similarly,
AS(k)=S(k+ k) — S(k)
=e””( i[S,ok-r]— %[[”3,51« r],ok-r]
+0(5k3))eik'f. (19

Thus, to second order in the stéj, we can identify the
terms in Egs(7) and(10) as

e

ARW—EOASD=i[A-EPSq-r],

AH(2>—Eg°)As<2>=—5[[H—E<n°>s,q-r],q-r]. (16)

In the above,sk has been written asq, whereq is a unit
vector in reciprocal space.

C. The band gradients and curvatures

The gradients and curvatures of the bands may now be
evaluated since we have, in Eq3), (10), and(16), an ex-
pression for the band energy up to second order in small
steps abouk,. If we use the notation,

Pen= (O NH-EQS 1[0, (17)
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then the band gradient in reciprocal space may be written agnd so the full expressions for the commutators will be,

IEn . A e~ .
07_ka:P”“’ (18 |[H1ri]:Epi+|[an1ri]- (23
and the curvature as, or what is known as the velocity operator, and the double
commutator,
ﬂ: —(ON[[A-EPST 1.7 516 52
n n tal n A A ~ Ao A
KpKa (AL ]=— 8+ Ve nlrl (29
—p2(0)irs e (0)
Pan(on lI[S,T gl &) The modifications due to the nonlocality of the potential are
_p# (¢(°)|i[§F ]|¢(0)> generally nonzero, and there are similar expressions for the
nn n " a n 2 . .
commutators of theS operator, which deviates from the
gkpﬁ; + Pﬁk o identity in the ultrasoft pseudopotential case and is nonlocal

& EO_go (19 in the same manner as the potential.
Equations(18) and (19) are derived by simply taking the V. EVALUATION OF THE k -p MATRIX ELEMENTS

reciprocal space derivatives of the second-order energy ex- ) K2 ok
The matrix elements of the forgW 5|p;| ¥} can be ef-

ression.
P ficiently evaluated in reciprocal space since the plane waves
Il THE COMMUTATORS making up the basis are agegs_tate_s of the the momentum
operator, and hence the operapois diagonal. If the nonlo-
The electronic Hamiltoniai may be written as, cal part of the potential is in separable fofmhich is com-
mon due to its computational efficienchen it may be writ-
. h2v? ten, following Vanderbilt, as,
H=— +V, (20
2m
. . . Vo= D : 25
whereV is the self-consistently calculated potential. Assum- ! % | B Do Bl 29

ing for the moment thafV,r]=0, which is the case for a
purely local potential, then we need to evaluate the followin
commutators that appear in the expressions for the band gra-

nd theS operator is,

dients and curvatures above: S=1+2 | Bn)tnm( Brl - (26)
n,m
2
i[A,r]=i| — ﬁ_vz ;} — 2}5 The | B,) are atomiclike projectors localized within the so-
o 2m =" U omtY called core radius of the pseudopotential. In the case of

Vanderbilt's pseudopotentials, they are constructed so that

[_ﬁ_zvz F} - (Bol )= Snm, Where|f?) are the atomic pseudowave-

2m = functions. TheD,,,, can be thought of as the strength of the
) nonlocal potential in each angular momentum channel, and
The operatomp is the momentum operator, from which the the q,,,, are related to the charge deficiency within the core
name ‘k-p” is derived. Using these expressions for the radius due to the decision not to apply the norm conservation
commutators, th&k-p expansion agrees with standard ex-constaint during the construction of the Vanderbilt pseudo-
pressions found elsewheteThere are however two situa- potentials. Clearly, if they,,, are set to zero, the form of the
tions in which the commutators are not so straightforwardnonlocal potential is just that of standard separable nonlocal
One is in the case of incomplete of basis sets, which has begfyrm-conserving pseudopotentials sinSereduces to the
examined by Boykirl. In the plane-wave basis the basis identity operator.
functions are eigenstates of the momentum operator, and This means that we must evaluate matrix elements of the

the_se c_ompllcatlons_ disappear. The other source of compl -Prm (ﬁ|Fi|‘I’ﬁ> and <B|FiFj|‘1’ﬁ>- These matrix elements

cation is more obvious, and concerns the use of nonloca . r : .
) . may also be evaluated in reciprocal space in the following

pseudopotentials. The effect of nonlocal pseudopotentials on i . R _

thek-p expansion does not appear to have been treated pri/ay- Consider the matrix elemef)g|e'd""| W), for smallg:

viously, although the first-order correction is closely con- A 1

nected to the correction required for the calculation of dipole (Ble' 9T WK =(B|TKY +i(B|q-T|WK)— 5(/5'”(1' r2|wky

optical transition matrix elements in reciprocal spAt€his

is an important omission given the prevalence of such poten- +0(q?) 27)

tials in modern electronic structure calculations. In general '

the pseudopotential can be divided into local and nonlocaNow, let q=(q,0,0), then

components,

2

DR h
[[H!ri]vrj]: :_H(Sij . (21)

) (Bl W) — (Ble19T1|W) = 2iq( 8| 4| WK + O(g?),
V=V,+V,, (22) (28



4386

C. J. PICKARD AND M. C. PAYNE

PRB 62

TABLE I. The electronic band gradients of the first four bands of diamond &t h@int (0.48,0.23,0.38
in reciprocal lattice vectors. The calculations were performed for the primitive cell, at a plane-wave cutoff of
600 eV and 360 bands in the normconserving case and 280 eV and 116 bands in the ultrasoft case. The units

of the band gradients are in eV A.

Gradient Band Normconserving Ultrasoft
Direction X y z X y z
Numerical derivative 1 6.2053 3.1345 1.2353 6.1550 3.1181  1.2363
2 —3.8210 —5.3539 —6.8463 —3.8193 —5.3681 —6.8659
3 —4.6409 —3.0813 5.9605 —4.6426 —3.0900 5.9874
4 —6.6917 1.6231 0.6623—-6.7471  1.6312  0.6532
Perturbation theory 1 6.2053 3.1345 1.2353 6.1550 3.1181 1.2363

2 —3.8210 —5.3539 —6.8463 —3.8193 —5.3681 —6.8659

3 —4.6409 —3.0813

4  —-6.6917

5.9605 —4.6426 —3.0900
0.6623—-6.7471 1.6312

5.9874

1.6231 0.6532

and so on. In a similar way, the matrix elements required fol0(g®) andO(qg*) terms to be negligible, but large enough to

the double commutator may be found. Again, lgt
=(q,0,0), then

(Bl W) +(Ble 91| W) —2( Bl W)
=—qXpIri ¥l +0o(g"), (29)

and so on. The cross terntise., r1r, etc) are obtained as
follows. Letgq=(q,q,0), then

(Bl TD|WK) 1 (gle 1901+ T2 WKy — 2( WKy

= —Q2(BIF W) +(BIr W) +2(BIT 17 o T EY)
+0(q), (30)

and so, using Eq29), (B|r1r,|¥X) can be extracted. Given

avoid errors due to precision limitations.

V. TESTS OF THE k-p METHOD

After deriving expressions for the electronic band gradi-
ents and curvatures, it remains to show that these expressions
can be implemented practically. To demonstrate this, two
tests are presented. The first is a straightforward comparison
with numerically calculated derivatives, and the second dem-
onstrates a practical application of the theory.

A. Numerical evaluation of gradients and curvatures

The electronic band gradients and curvatures may be cal-
culated numerically by simply taking small steps in recipro-
cal space. However, such numerical derivatives can be diffi-
cult to converge with respect to the step size. Accuracy

that the electronic structure method used must already ha‘f%quires small step sizes, but this, in turn, leads to small
routines for evaluatings|¥'y), the advantage of this method energy differences and an extreme sensitivity to errors in

is that evaluating 8|e'9"| k) simply involves small shifts
in the grid in reciprocal space on whig¢) is calculated.

these energies. This is a particular problem for the iterative,
rather than direct, diagonalization techniques commonly

This avoids tiresome evaluation of new spherical harmoniaised in plane-wave codes. A further problem is that of band
projectors, and this approach is readily extended to highecrossing'® If the derivatives are sought aboutkapoint for
order. The size ofy is chosen to be small enough for the which some bands are degenerate, the numerical derivatives

TABLE Il. As in Table I, but here the curvature in the direction of the three principal axes of the
curvature tensor is presented. The units of curvature are &\aid the curvature for a free-electron band in
the same units is 7.62 eV?A

Curvature Band Normconserving Ultrasoft
Direction 1 2 3 1 2 3

Numerical derivative 1 3.40 5.41 5.67 3.49 5.37 5.62

2 —3.68 3.71 554 —-3.57 3.75 5.58

3 —20.35 2.17 6.03 —20.22 2.16 6.00

4 -6.72 -0.67 1204 -6.70 —-0.69 11.95
Perturbation theory 1 3.40 5.41 5.67 3.49 5.37 5.61

2 —3.68 3.71 553 —-3.57 3.76 5.58

3 —20.33 2.16 6.03 —20.20 2.15 6.00

4 -6.70 -067 1201 -6.67 —0.68 1193
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I L A L clear that the normconserving and ultrasoft pseudopotential
— Ultrasoft results are practically identical within the valence band. The
=+ Normconserving small differences in the conduction band are due to the dif-
ferent higher energy scattering properties of the pseudopo-
tentials. This is expected, since the pseudopotentials are con-
structed to give accurate results in the valence-band energy
range only.

g VI. DISCUSSION

Density of States

As a crude indication of the usefulness of this extension
of k- p perturbation theory to ultrasoft nonlocal pseudopoten-
tials, we found that the calculation of the density-of-states

L oV, shown in Fig. 1 was some three and a half tjmes quicker in
20 <100 10 20 30 40 the ultrasoft case, compa_red to the calculatlon_u_smg norm-
conserving pseudopotentials. Even greater efficiency gains
have been found in larger systems—a factor of 7 for the
_ _ carbon polymorph described in Winklet al.'?

. FIG. 1. The valence and conductllon-band density-of-states for While the band gradients are essentially computationally
diamond, calculated for normconserving and ultrasoft pseudopoterl:—Ost free, thek-p perturbation theory presented here for the

tials using plane-wave cutoffs of 600 and 280 eV, respectively. : - .
) ) i . and curvatures requires a summation over the entire
total of 40 bands were included in the perturbation summation an

the Fermi energy is 0 eV. eigenspectrum. G|ven thg typically large size of plane—que
bases, this is impractical in general. Currently the evaluation
of these many eigenstates dominates the computational cost

. . . . of the method. While it is often possible to use a set of
become ill defined. For this reason, the test case of dlamong P
r

; . . igenstates restricted to the lower portion of the eigenspec-
presented here in Tables | and Il is a calculation performe um, it would be desirable to reformulate this theory in
abgllj(t anc()jrspemglk point. In o_rd?r to test tT]at the;]nulrge;cal terms of only those states for which we are interested in the
andk-p derivatives are equivalent—as they should be —goconic structure. It is likely that such a formulation would
almost the entire eigenspectrum has been included in thﬁe similar to that employed by Maueit al*3 in which the
perturbation summation of EL9). In practical applications .

. . ; erturbation theory including the summation is recast as a
such accuracy will be rarely required. The result of this test, system and solved using conjugate gradients
is positive, in that the deviations between the numerlcall_yminimization.14 This reformulation would result in an effi-

and perturbationqlly calculated derivatiy es presented_ ient and accurate approach to the calculation of band cur-
Tables 1 and Il might reasonably be assigned to nur‘ner'ca\/atures(and hence effective masgemnd would be of great

IMprecisions rather' than some error in E(K3) and(1'9), O interest to those who model the transport properties of het-

in the implementation. In fa_lct, to the_ number of S'gn'f'canterostructures.

figures presented, the gradients are identical. In conclusion, we have derived the p expressions for

the gradients and curvature of the electronic energy bands for

a generalized Hamiltonian, and implemented these expres-

sions in the case of the widely used Vanderbilt ultrasoft
The motivation for this extension of-p perturbation pseudopotentials and plane waves. The results are found to

theory was the generation of a piecewise quadratic represehe accurate, and in combination with an extrapolative

tation of electronic bands for use in the second-order exBrillouin-zone integration schemé,the approach is shown

trapolative Brillouin-zone integration scheme describedto be efficient and useful in the calculation of electronic

previously!! In Fig. 1 we show the total density-of-states of densities-of-states.

diamond, using gradients and curvatures calculated with the

expressions presented here and the extrapolative integration

scheme. A fairly low number df points(16 in the irreduc-

ible wedge of the primitive cell of diamondhave been used The work of C.J.P. was supported by the EPSRC, and he

in order to emphasize any differences in the gradients andiould like to thank Francesco Mauri and Peter Haynes for

curvatures in the normconserving and ultrasoft cases. It isseful discussions.

Energy (eV)

B. Calculation of electronic density-of-states
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