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Extrapolative approaches to Brillouin-zone integration
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A highly efficient extrapolative Brillouin-zone integration scheme is presented that requires a very low
k-point sampling density for spectral integrations. It is important to use an extrapolative approach, since at
low sampling densities interpolative schemes are hindered by problems associated with band crossing, which
introduce spurious singularities in the density of statb©S). The information for the extrapolation is
obtained using second-ord&rp perturbation theory within a set of subcells of the Brillouin zone, which
can be chosen to make full use of symmetry. The resulting piecewise quadratic representation of the band
structure is converted directly to a DOS using an analytic approach. It is also shown that this method can be
successfully applied even in the linear extrapolative cg8@163-18209)06807-1

I. INTRODUCTION proaches used to predict spectra used require only small ba-
sis sets that allow rapid matrix diagonalization of the result-
Most electronic properties of real systems in the soliding Hamiltonian and hence a small computational cost for
state depend on sums over a computationally intractabléachk point. However, minimal basis set approaches are
number of electronic levels. Bloch’s theorem transforms thehecessarily restricted as to how far they can predict spectra
electronic structure problem from one of calculating an infi-into the conduction band, and they are not intrinsically as

nite number of electronic staté®r an infinite periodic sys- accurate as the more expensive plane-wave pseudopotential

infinite number ofk points within the Brillouin zone of the Ccléar that if resources can be saved in the Brillouin-zone

system. Calculations of the properties of a given system thelfitégrations then the savings can be “spent” on using plane
require some form of integration over these points. Waves, Iarger §upercel!s, or more elaborat.e theory. In this
Straightforward weighted sums over the states—e.g., for thBa@per a Brillouin-zone integration scheme is described that
total energy and forces—are usually performed using a Sp@xplons the_ essential smoothness of the bands and avoids the
cial point schemkand a modest number &fpoints. Recent Pand crossing problem.
developments of sampling approaches led to accurate values
for these integrated quantities even in the difficult cases of
metals>® However, energy-resolved spectral properties, such Il. BAND CROSSING PROBLEM
as densities of state®OS), require more careful integra- The band crossing problem is a well-known impediment
tions. o _ . to the rapid convergence of interpolative meth®dsThe

On examining experimental spectral data, one is led to thgjmple one-dimensional example shown in Fig. 1 illustrates
conclusion that Brillouin-zone integrations are, in manythe kind of changes that can occur in the DOS given different
cases, only required to produce features at a finite-energyang allocations for the interpolation. At a gendeaboint it
resolution—a limit placed, for example, by the energy-is more likely that the bands do not actually cross as a result
broadening effects introduced by core hole lifetimes in corenf small interactions between the bands that break the
level spectroscopiésind the finite lifetimes of the final qua- degeneracy—rather they can be described as “kissifsge
siparticle states in optical spectroscopffhus it is not  Fig. ), getting very close at a given point, but both the upper
physically meaningful to calculate at higher resolutions. Fur4nq |ower bands remaining individually continuous although
ther, from a practical perspective, all experiments have ghe character of the bands is exchanged across the “kissing”
finite-energy resolution and frequently concentrate on theyqint. It is unclear as to whether any connection of the bands

tures. Looking at calculated band structures, it is clear thagsnd structure in three dimensions.

the bands are essentially smoothly varying objectskin

space. Detailed investigation of the wave functions show that

they also vary smoothly itk space It might therefore be IIl. CURRENT METHODS

hoped that only a sparse sampling of the Brillouin zone o ) ) )

would be required to obtain a good representation of the Many Brillouin-zone integration techniques have been de-
bands and hence the DOS. However, any interpolative spard€loped over recent years. Some common ones are briefly
sampling scheme has to confront the band crossing problefescribed below, with particular emphasis placed on their
described in Sec. II. In the past the approach taken has bed¢rformance for predicting spectral properties.

to acknowledge this problem and calculate the DOS at the
very high density ok points required to alleviate its effects,
and then smear the resulting spectrum to the experimental
resolution. This is clearly computationally wasteful, but is  This is the simplest approach to Brillouin-zone spectral
offset by the fact that many of the electronic structure apdintegrations.k points are distributed as evenly as possible

A. Gaussian broadening
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FIG. 1. A simplified one-dimensional example of the band
crossing problem. An incorrect allocation of bands can cause dre
matic changes in the calculated DOS.

throughout the Brillouin zonéeither regularly or randomly
as in a Monte Carlo methgdand the DOD(E) is formed
according to

Energy

1
\/Eai

where the sum is performed over the states; are the
corresponding energy levels, ands the energy broadening
parameter. This method actually converges at van Hove
singularities® faster than the linear method described FIG. 2. An example of one kind of frequently encountered band
below!! However, this only applies at the limit of full con- “kissing,” for which there is some hope of dealing with in the
vergence, which is rarely required or achieved. The Gaussiagxtrapolative method. This example consists of two quadratically
broadening method is, in practice, less accurate than the lirfispersive bands intersecting each other and a repulsion occurring
ear interpolative method for most purposes, but it is the?long the curve of intersection. Two- and three-dimensional projec-
method of choice for work that simply requires a rough ideations are showr(v_wth two and one reciprocal space dimensions
of where the electronic states lie. It clearly does not suffefémoved, respectively

from the band crossing problem, since no topology of the . . .
bands is assumed. gp pology louin zone. This method converges more rapidly than both

the Gaussian broadening and linear tetrahedron methods due
. . . to the more accurate treatment of the van Hove singularities,
B. Linear interpolative tetrahedron method which occur wheVE(k)| =0. To accurately describe these
The linear tetrahedron methdis the staple Brillouin-  points, E(k) must be known to at least second orderkin
zone integration technique for the electronic structure comHowever, this methodology does not appear to have been
munity. Indeed, recently Bithl et al® have published an widely applied by the community. A probable reason for this
“improved” method. It is a relatively straightforward ap- is that this method is particularly susceptible to the band
proach and, hence, very attractive. The scheme is applied lyrossing problem because it is a higher-order interpolative
dividing the irreducible wedge of the Brillouin zone into scheme. So, while convergence for a single band is impres-
approximately equally volumed tetrahedra, then by calculatsive, the method becomes relatively expensive in real sys-
ing the band energies at each apex a linear representation ®&ms since a higtk-point sampling density is required to
the band is constructed within the tetrahedron. From thispvercome the band crossing problem and the extra effort is
contributions to the DOS can be evaluated analytically.not justified. It is, however, one of the building blocks for the
However, the method suffers from the band crossing probscheme developed below.
lem and a poor representation of van Hove singularities due
to the absence of second-order band informatfon. D. Linear extrapolative method

D(E)= e (BRI, (1)

ky (b)

. . The vast majority of Brillouin-zone integration schemes
C. Quadratic interpolative tetrahedron method use an interpolative approach. However, an alternative is to

A series of papers by Methfessel and co-worket$*  extrapolate from a single point within the subcell of integra-
demonstrate the superior convergence properties of a methdidn. This removes the need to allocate bands, circumventing
based on a piecewise quadratic representation of the Brithe band crossing problem completely. This approach has



PRB 59 EXTRAPOLATIVE APPROACHES TO BRILLOUIN-ZONE . . . 4687

been used by Mier and Wilkins who developed a linear Piecewise quadraticTo correctly treat the van Hove singu-
extrapolative method. They demonstrated the improvemeniarities, at least a second-order expansion is required.
over conventional schemes by calculating a free-electrok-p perturbation theoryAllows access to band information
DOS using both linear interpolative and linear extrapolativearound a selectekl point, and hence gives the required qua-
schemes. Using 256 tetrahedra the extrapolative scheme disatic expansion of the bands.
close to convergence, while the interpolative one is a mess drillouin-zone division.The Brillouin zone is divided into
spurious features. arbitrary polyhedra of approximately equal volumes. The full
symmetry of the system can be utilizé8ec. VII).
Analytic quadratic. The work of Methfessel and
co-workerd!1314 permits a direct conversion of the piece-
If we are to employ an extrapolative scheme, we need &ise quadratic representation to a contribution to the DOS,
technique for evaluating the quadratic representation of &voiding the need for resampliri@ec. VIII).
band within a given cell from information available at a  Many of the individual elements of this proposed method
singlek point in that cell.k-p perturbation theofyprovides ~are not new. However, they have never previously been
a technique for doing just this. Knowledge of the wave func-brought together as a single technique. Some components
tions and energy eigenvalues at thpoint concerned allows (the treatment of “kissings,” second-ordkrp perturbation
information about neighboring points to be extracted. In theory with nonlocal pseudopotentiafsand the Brillouin-
princip|e’ a second-order expansion of the energy requires Zone leISIOI’) are novel developments. Technical details of
perturbation sum over matrix elements between all states if'e method are now described.
the eigenspectrum. This has consequences for a plane-wave
approach that depends on iterative diagonalization. The sum-
mation is necessarily restricted to those few bands actually

evaluated. As mentioned in Sec. Il, one of the remaining problems of
Alternatively, numerical differentiation might be used to Brillouin-zone integrations is what to do when bands cross,
evaluate the second-order expansion of the band energigs: get very close to each other—"kiss.” For interpolative
However, the problem of band crossing is reintroduced agpproaches, this manifests itself as a problem of band order-
the bands must be allocated to enable the differentiation. In"]g, and it is not clear whether in genera' it is a soluble one.
tests of this approach it was found that numerical differen4yhile the band ordering problem is eliminated by adopting
tiation fails completely near any degeneracies in the ban@n extrapolative method, problems arise when sampling
structure and so a general scheme based on this could not BSints land at or near kissing pointahich are the points
produced. where bands do not quite cross because there are small in-
In this work the quadratic representation of the bandieractions between the approaching bands that repel the
structure is obtained using an extensiorkep perturbation  pands as shown in Fig.)2At these points the curvature of
theory, modified to work to second order and with nonlocalthe bands can be very |arge' and the radius of convergence of
pseudopotentials, as will be described in a future paber.  the Taylor expansion is much reduced. Thus the piecewise
quadratic method fails at these points because the extrapola-
V. AN OUTLINE EOR A NEW INTEGRATION SCHEME tion sends states to a wide range of incorrect energies in
some cases leading to the closure of band gaps. Clearly, if
To summarize, the prevalent scheme for spectrathere is to be any hope of a sparse sampling high-order ex-
Brillouin-zone integrations is currently the interpolative lin- trapolative approach to Brillouin-zone integrations, the prob-
ear tetrahedron method. A low-order interpolation fails tolems associated with the kissings must be overcome.
describe van Hove singularities efficiently but is relatively  There are many complex ways in which one could imag-
simple. Since highk-point sampling densities are required ine three-dimensional sheets in four dimensions crossing, or
for convergence, the band crossing problem is not extreméissing, each other. In our case these sheets are the bands.
Other schemes have been presented in the literature, but no@ven such a situation, it may appear to be an intractable
of them have made a significant impact. The second-ordgsroblem to develop any scheme for reducing their effect on
k-p approach of Wang and Callawdydid not correctly the Brillouin-zone integration. However, on looking at some
implement Lowdin perturbation theoryas clarified by representative band structures some generalizations can be
Loehrt’). It was thought of as an interpolative scheme, themade. As mentioned above, the kissing problem is revealed
DOS was evaluated by resampling and using a lineaat points with extreme curvatures—the kissing bands get
method, and as a result the scheme required a very largdose to each other but rapidly turn away at the kissing point.
number of sampling point&l357 in the irreducible wed@ge The points where this occurs in the band structures can be
Mller and Wilkins’ used an extrapolative first-ordér-p  easily located by looking for those bands at any particklar
scheme, clearly recognizing the band crossing problem. Thpoint that exhibits extreme curvatures. Those bands that both
restriction ofk-p theory to local potentials, and the problem curve strongly and lie close to each other in energy might be
of incomplete local basis sets, noted by BoyKnmay have  expected to be kissing. Following this detection it becomes
reduced its use. The current work removes this restriction. clear that a vast majority of the kissings that occur are of the
In light of previous arguments, the essential features oimplest kind—shown in Fig. 2. These involve pairs of bands
the method are as follows. that kiss as if they cross as simple sheets. This is most clearly
Extrapolative. Extrapolating away from a single point allevi- illustrated by the fact that the pairs of bands with extreme
ates the worst of the band crossing or “kissing” problems. curvatures and similar energies frequently have parallel di-

IV. OBTAINING THE QUADRATIC REPRESENTATION

VI. BAND “KISSING”
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TABLE 1. Curvature information indicating a simple band Before After
“kissing.” i is the band index anf; the band energyB, , ; are the 220
curvatures in the principal-axis directions of the curvature tensor
and the vectok, , , is the direction of greatest curvature. It is 215 |
proposed that bands 18 and 19 participate in a band kissing. The
band energies are close, the curvatures are extreme, and the direc-
tions of greatest curvature are approximately parallel. 21.0

ik, K, k, B, B, B, E

16 —0.22 0.48 0.84 -—38.7 -0.1 84.5 59.9
17 —-0.76 —0.36 —0.53 —37.3 -9.7 -11 66.0
18 0.81 —0.49 0.28 —1495.5 —101.6 414 674
19 0.85 —0.42 029 -—-69.2 345 1507.9 67.5
20 0.43 0.88 —0.17 —37.2 8.7 136.3 69.0 19.5

Energy (eV)
n
o
(4]

20.0

rections of greatest curvature, as would be expected if twc 19.0
three-dimensional planes in four dimensions kiss. The upper

one (in energy curves strongly upwardg, the' lower down- cedure described in the text clearly works well for this particular
wards. An example is pr_esented numenca.”y In _Table . Theoand “kissing” situation—the bands which were presumably pre-
SChem_e now presented IS capable of dealing W'th t_hes_e Sm@?ously kissing are forced in this scheme to truly cross. This ex-
plest kissings. However, in real systems the situation is 0Cympje s for the conduction band of silicon, where such situations
casionally more complex. In many cases nearly degeneraige common. The curves are produced from the piecewise quadratic
triplets of bands with extreme curvatures are found that canrepresentation before and after the treatment for kissing. As can be
not be treated as a combination of the simple kissings. Deakeen from the discontinuities in the bands, there are kwamints

ing with these more complex cases is an area of currenilong the slice presented, tkeoints are not shown since the slices
research. do not pass through them.

FIG. 3. An example of the scheme at work. The crossing pro-

The scheme occurs. This can only be done simply if we assume the bands

This method for Brillouin-zone integration is designed for effectively cross only in one dimension. This can be a good
efficient calculation of experimentally observed spectralapproximation if the subcells are small compared to the local
properties where experimental and lifetime broadeninggurvatures of the bands. In such a case, a three-dimensional
place a limit on the resolution required. It is clear that manycrossing can be tracked along the direction of high curvature.
of the bgnd kissings (_)bserved will produce spectral featureg the approximation is good, the directions will be the same
at too fine a resolution to have any experimental consefy hoth hands, and this is one of the conditions for detecting
quence. As a result, a scheme is presented that deals with the, (aatable kissings. The band ordering then becomes a

more common kissings detailed above—the straightforwarqme_dimensional problem, and the two bands may be unam-

sheet_ kissings. The.approach taken IS to .make the_se trLb‘?guously crossed as shown in Fig. 3 and Taylor expansions
crossings, thus keeping the spectral weight in approximatel

the correct position, but ignoring the fine structure related to¥Or the two bands are constructed, using the higher-order

the band repulsiofi.e., a small change in the spectral Weightlnformation from t.he Lowdin perturbation calculation.' A

due to the opening of a band gap more detailed recipe for carrying out the procedure is as
The simple kissings that will be treated are dominated by©!lOWS: _

two interacting bands, the remaining bands playing a much () Look at the stack of bands for eakhpoint.

weaker role. Since the second-order Taylor expansion is in- (i) ~Calculate thek-p expansion at each point.

sufficient in the region of the kissing, higher-order informa- (i) Diagonalize the curvature tensor, and note the di-

tion about the behavior of the bands is required. This is protection of greatest curvature.

vided by a restricted form of Lowdin perturbation theory—  (iv) The treatable kissings will consist of pairs of high

see Kan& for a review. Historically it has been common curvature bandéee Table)l For both bands the direction of

practice to use Lowdin perturbation theory to describehigh curvature will be closémodulo a sigh and one will

strongly interacting or degenerate bands k+p approacH®  curve positively and the other negatively due to the sign

However, it has often been incorrectly applied leading to thechange in the energy denominator of the perturbation sum.

problem being described by non-Hermitian submattftas (v) Having found a candidate kissing, the bands are

pointed out by Loeht! It is likely that this error went unno- crossed by finding band energies either side of the suspect

ticed due to the large number kfpoints used in earligk-p kissings using Lowdin perturbation theofgis corrected by

methods (1357 in & of the Brillouin zone in Wang and Loehr'’) on the two bands concerned.

Callaway's® nickel band-structure calculatipnWith the (vi) The new curvature in the high curvature direction is
low sampling density used in the present scheme, these eieund by evaluating the band energies using Lowdin pertur-
rors must be avoided. bation theory assuming the new crossed allocation, and this

The fundamental problem in the present approach is thageplaces the old curvature. The same is done with the gradi-
of the band ordering within the subcell in which the kissingent in that direction.
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(vii) The gradients and curvatures are rotated back tevherea, 8, and y are integers labeling the grid, ahdm,
the original coordinate frame. andn are fixed integers chosen to give an even distribution

(viii) Having looked through all bands atkdpoints the  of k points in reciprocal spacg.e., approximately spherical
procedure can be repeated, since there may be several kis&tigner-Seitz proximity subcellsif I, m, orn are even, then
ings mixed together. the grid can be shifted to balance the points about the origin

Clearly, criteria are required as to what constitutes an the associated direction.
strong curvature, and how close the high curvature directions If the system concerned has any symmetry in addition to
must be. Setting these thresholds will determine the toleranage inversion symmetry that will always be present, then the
to kissings, and thus appropriate values for these thresholdsibcells may be symmetrized. However, it is clear that for
will depend on the resolution required in the final spectrumlow k-point density the symmetry will not be well used.
At present, the treatment of this threshold remains ratheAlso, the grids produced by this method tend to have points
crude, and is based on a weighted sum of numbers represermfiong high-symmetry directions, making band kissings more
ing the closeness of the directions and strength of theommon. Naively shifting the grid produces problems with
curvatures? symmetrization. However, to overcome this problem one

may keep the cells fixed and shift thkepoint of expansion

VIl. BRILLOUIN-ZONE DIVISION within the subcell.

So far the expansion of the band structure of a given
system about any point in the Brillouin zone has been dis- B. Full use of symmetry

cussed. This expansion is to second order only, and in any- Although many modern electronic structure calculations

thing other than the case of a free electron, it will be validconcentrate on systems with ever larger unit cells and ever

only about a finite region surrounding the expansion pointreduced symmetry, it is clear that there are still many prob-

Therefore it is necessary to divide the Brillouin zone into ajems that could benefit from the use of symmetry, for ex-

set of subcells within which the expansion holds to the acample, highly computationally intensive techniques such as

curacy required. Thus, from the information in every subcellihe G\W method for calculation of quasiparticle spectrso

a piecewise quadratic representation of the band structure {fjs end, a technique for efficiently exploiting symmetry

constructed. The total DOS for a given band can therefore bgyen at lowk-point densities is now presented.

written, (1) Find the first Brillouin zone for the system of inter-
est using the Wigner-Seitz proximity cell definition for sym-
metry reasons.

Diol(E)=2 Di(E), ) (2) Find the irreducible wedge, assuming the full sym-
' metry of the lattice type. This is constructed from the Bril-
whereD;(E) is the DOS contribution of theth subcell. I;g;gnzd%nnet (5?1/ tﬁ‘:&ggg‘:}f{;‘g” of a set of planes that are

ods, tis piecewise quadratic band aructure & not continuoys (3. Decide How many tmes to recursively halve the vor
acréss the subcell boundaries. This is a necessary feature ope of the subcells—starting with the irreducible wedge. For
. : O xample,n times will produce 2 subcells andk points.

the extrapolative approach. Any attempt to join the bands ; :

the cell edges amounts to an interpolation, and the band or-here IS (_:onS|derabIe freedom as to how to halve each sub-

dering problem is reintroduced. In the exar:nple of Fig. 6 thece"' It is important to try to make egch subcelllas glose_to

oscillatory errors caused by these discontinuities are visibles.pr.]e”caI as possible so as to avoid ‘.‘Iong'_’ directions in

Clearly, as the size of the subcells are decreased so do tr\1Neh'Ch the second-order Taylor expansion will b(_a less well
' converged. So, the subcells are divided perpendicular to the

magnitude of these errors. - . “long” direction, which is defined by consideration of the
To produce an efficient integration scheme we have tq

divide the Brillouin zone in the most efficient way, with an moment of inertia tensor of the cells if they are treated as

emphasis on good coverage of the Brillouin zone even akmiform solids. The division is applied at a point where there
P 9 verag is equal volume on either side of the cut.
very low k-point sampling.

(4) Having constructed the subcells, thepoints are
placed at the center of mass of each ¢afiain treated as a
A. Commensurate subcells uniform solid.

(5) So far, full lattice symmetry has been assumed. In

One approach is to divide the Brillouin zone into com- T :
mensurate subcells. This can be done by forming a grid the case of a reduction in lattice symmetry that can occur as

points in terms of multiples of integer fractions of reciprocal- ato.ms are placed on the lattice, it IS necessary to de'termlne
lattice vectors, keeping only those falling within the first Which symmetry operations generating the star remain after

Brillouin zone and constructing Wigner-Seitz proximity sub- Sy?mﬁtr'_zat'?]n' The wred(t;c:cble weﬂgjalready divided in
cells about each point that is retained. For exampl&,if; ~ SYPCe $ is then repeated for each symmetry operation,

are reciprocal-lattice vectors, then a point in the new grid igVhich results in distinct points in the Brillouin zone given
given by the symmetry of the system of interest.

Examples of the application of the procedure outlined

above are shown in Fig. 4. It is clear that this approach

" =a&+,8%+ Gs (3  Makes full use of the system's symmetry. In the limit of a
aBy I m_ Y singlek point for a system with full symmetry, the one cell
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(b)

FIG. 4. (a) A simple cubic Brillouin zone, with the full symmetry irreducible wedge divided into two subd@élidlexagonal Brillouin
zone, with full hexagonal symmetry and the irreducible wedge halved téggécc lattice Brillouin zone with full cubic symmetry(d) A
hexagonal Brillouin zone with reduced symmetry, with the irreducible wedge undivided.

generated is the irreducible wedge. It should be noted that fasigned for situations of high symmetry and for Brillouin-
any integration routine based on interpolation it is impossiblezone integrations requiring low-point sampling density.

to contemplate the use of a sinddepoint. Also, in general,
the k points generated by this technique do not fall in direc-
tions of high symmetry, thus reducing the problems associ-
ated with band kissing and crossings. However, it should The final problem to be solved is to perform Brillouin-
also be pointed out that this method is not particularly usefukone integrations for the DOS and other spectral properties
if high k-point sampling densities are required as the polyfrom the piecewise quadratic representation of the band
hedra produced can get quite complex. Also, there is littlestructure. Clearly, one could resample the representation to
gain due to symmetry at high density in comparison to thefind the band energies on a finer grid and simply apply one
commensurate subcells described in Sec. VIIA. The apef the standard methods for Brillouin-zone integration de-
proach based on the division of the irreducible wedge is described in Sec. lll. This is not appealing, since the correct

VIII. ANALYTIC QUADRATIC DENSITY OF STATES
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analytic form for the bands around the critical points is lost. 1.0 . . .
Furthermore, it is a computationally costly route. The ideal
approach would be to take the quadratic representation an
turn it directly into a contribution to the total DOS. Since the
DOS of a free electroiqwith its quadratic dispersigrhas a
well-known, and simple, analytic form this should be pos-
sible. The significant complication is that the contribution to
the DOS comes from a finite region in reciprocal spaae,
the subcells described in Sec. YIIAn expression for the
density of states for a given band is

0S

0.5 | i

D

ds

D(E)=f 5(E(k)—E)d3k=Lm, (4)

whereS is a constant energy surfa¢@ES at energye. For

a spherical dispersion relationshi(k)=Bk?, |VE(K)] 00 ——— = o 55 o o =
=2Bk, and, hence, . . . . . ] )

(a) Energy (eV)

ds Ank? 2m\E 50
D(E):LWkE(kH: 2Bk NG ©

where spherical symmetry has been used to simplify the sur
face integral.

The problem must now be extended to the situation in__
which the surface integration is restricted to a finite volumes
in reciprocal spacébounded by a convex polyhednoror
simplicity consider a cube, with the origin at its center.
Clearly, for smallE the expression for the DOS will be un-
changed. However, at some energy the CES must start to ci
the polyhedron. At this energy and above, the DOS will be
reduced(since the included surface is redugethis energy
is known as asingularity. Singularities occur when the CES
strikes the faces, edges, and vertexes of the polyhedron. £ _40 ‘ .
some point the entire CES will be outside the polyhedron® T (0,0,172) (0.122,172) (12,172,172)
and the DOS will beco'me Z€ro. l_t may appear toibe a d'ff'f FIG. 5. Density of states for a free electron, calculated in a
cult problem to track thI'S change in the DOS, and indeed th'%imple cubic cell using a single point, displaying the expected
problem has been calléchpossibleby Lehmanrl14and Tau (E—Eg)Y? behavior and the corresponding free-electron band
But the work of Methfessel and co-workets®**presents a  sructure. The coordinates indicate points in the Brillouin zone in
theoretical solution to this problem for tetrahedral volumesynits of reciprocal-lattice vectors.
and a practical scheme for its implementation. For the pur-
poses of the current approach the implementation of Methpotentials set to zero. A simple cubic cell is used, and the
fessel and co-workers must be extended beyond tetrahedragihgle integration subcell is the irreducible wedge. As ex-

40

30

20

Energy

arbitrary polyhedra. This is described elsewttére. pected(since the free-electron dispersion is quadjatibe
DOS is fully converged using a singkepoint as can be seen
IX. EXAMPLES in Fig. 5. A selection of bands are also shown that are also

) ) ~ extrapolated from a single sample point. This is not an en-
Having described a new scheme for spectral Brillouin-tjrely trivial result, since in the case of an interpolative ap-
zone integrations, we now give some examples that demorsroach there would be problems with band crossings. This

strate the quality of Brillouin-zone integrations that are posvyesylt should be compared to the linear extrapolative free-
sible with this scheme. It should be noted that the techniqu@|ectron test of Mlier and Wilkins? which required 256

is not designed for the ultimate in accuracy, but rather as gtrahedra for a similar level of convergence.
method for rapidly obtaining the general features of a spec-

trum. In the following examples, the DOS is presented in 2. Simple cubic s-band test
units of number of electrons per unit cell per unit of energy

(electron volts in Figs. 5 and 8 and unity in Figs. 6 and 7 The convergence of the new scheme is now examined for

a simple cubics band, the example discussed previously by

Boon et al!! The dispersion relation for this system is
A. Toy models

—_1
1. Free-electron dispersion E(k)= 3[C05ka+COSka+ cosk,]. ©®)

The Brillouin-zone integration method is applied after The gradient and curvature information for the piecewise
performing an electronic structure calculation with the ionicquadratic representation required for the new scheme is ob-
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FIG. 6. s-band DOS with no smearing. The dashed curve is ¢,
obtained using & points in 5 of the Brillouin zone, while the solid 8 or
one is obtained with 128 points. Note the poor convergence on 05 |-
the plateau. oo L . ‘ ‘ ‘ . .
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tained directly from the dispersion relation. Boenal'* . .

looked at the extreme convergence properties and found the FIG. 8. Convergence of the DOS of diamond for linear and
analytic quadratic method to work well, as it deals with theduadratic extrapolative approaches: two-atom diamond primitive
van Hove singularities. Here the emphasis is on the low sanfell: 40 bands, and an energy cutoff of 600 eV. No smearing is
pling densities. applied. Thek points are contained W|th|ﬁig of the Brillouin zone.

It is clear that, in comparison with the free-electron case,
the convergence is slow, as shown in Figs. 6 and 7. This is tE
be expected—the dispersion relation contains terms to a
orders. Particular problems are encountered on the plateau of _ )
the DOS—the spikes being due to overlap in energy of the B. Total density of states of diamond

piecewise quadratic bands due to an inadequacy of the Figure 8 shows a series of total DOS calculated for a
second-order expansion. However, in keeping with the phitwo-atom primitive cell of diamond using an increasing
losophy of the approach, the application of a Gaussiamumber ofk points in the irreducible wedge of the Brillouin
zone. The calculations were performed using the local-
20 : , density approximation, a plane-wave basis set, and optimized
2kpoints 4 kpoints 8 kpoints nonlocal pseudopotentialsThe most important conclusion
is that the essential features of the spectra are obtained for
very low k-point densities and, somewhat surprisingly, for as
few as two points in the irreducible wedge. Given the low
os | 4 + . resolution of many experimental spectra, it is clearly not nec-
n essary to push the calculations to very high sampling densi-
00 A = ties. It should be pointed out that any interpolative method
would require more than a single sample point just to per-
16 k points 32 k points 64 k points form the interpolation, regardless of the quality of the inte-
gration.

mearing to the DOS results in good convergence at low
-point sampling densities.

15 —+ + 4

DOS

16 -

X. LINEAR EXTRAPOLATIVE METHOD

DOS

05 -

It is straightforward to restrict the approach described
above to the first order only, producing a linear extrapolative
approach. The polyhedral subceltee Sec. VIl can be di-

-0s w L L A vided into tetrahedréeach face can be divided into triangles

2 Engrg T2 A Engr o2 A Engr v and the fourth apex placed within the gelThen the formula
Y o o for the conversion of the first-order expansion of the bands

FIG. 7. Convergence aband DOS with smearing. A Gaussian iNto @ DOS contribution given by Bihl, Jepsen, and
smear of 0.1 is applied, producing the solid curves. The dashendersefican be applied. A comparison of the results of this
curves are the differences of the unconverged DOS from one corinear approach to the full quadratic scheme is shown in Fig.
verged at 12& points. 8. It is clear that the linear extrapolative approach still allows

[ e e B R R
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low k-point sampling, but it can be seen that the behavior atvhich is then converted analytically to a density of states.
the band thresholds is poor. However, an advantage of th€he Brillouin zone is efficiently divided into subcells to
linear approach is that it requires no perturbation summatiormake full use of the symmetry of the system of interest.
and hence the band truncation error mentioned above iSests of the scheme show that the essential features of spec-
avoided. tra are obtained for very few points within this approach,
and even a restriction to linear extrapolation gives rise to a
Xl. SUMMARY useful scheme despite the poor treatment of the van Hove

singularities.
In summary, a second-order extrapolative approach to the

integration of spectral properties has been developed. It ex-
ploits the smoothness of band structures seen thrdugh

perturbation theory and uses exactly this theory to generate a
piecewise quadratic representation of the energy bands, The work of C.J.P. was supported by the EPSRC.
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