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Extrapolative approaches to Brillouin-zone integration

C. J. Pickard and M. C. Payne
TCM, Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, United Kingdom

~Received 8 September 1998!

A highly efficient extrapolative Brillouin-zone integration scheme is presented that requires a very low
k-point sampling density for spectral integrations. It is important to use an extrapolative approach, since at
low sampling densities interpolative schemes are hindered by problems associated with band crossing, which
introduce spurious singularities in the density of states~DOS!. The information for the extrapolation is
obtained using second-orderk–p perturbation theory within a set of subcells of the Brillouin zone, which
can be chosen to make full use of symmetry. The resulting piecewise quadratic representation of the band
structure is converted directly to a DOS using an analytic approach. It is also shown that this method can be
successfully applied even in the linear extrapolative case.@S0163-1829~99!06807-1#
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I. INTRODUCTION

Most electronic properties of real systems in the so
state depend on sums over a computationally intracta
number of electronic levels. Bloch’s theorem transforms
electronic structure problem from one of calculating an in
nite number of electronic states~for an infinite periodic sys-
tem! to one of calculating for a finite number of bands at
infinite number ofk points within the Brillouin zone of the
system. Calculations of the properties of a given system t
require some form of integration over thesek points.
Straightforward weighted sums over the states—e.g., for
total energy and forces—are usually performed using a s
cial point scheme1 and a modest number ofk points. Recent
developments of sampling approaches led to accurate va
for these integrated quantities even in the difficult cases
metals.2,3 However, energy-resolved spectral properties, s
as densities of states~DOS!, require more careful integra
tions.

On examining experimental spectral data, one is led to
conclusion that Brillouin-zone integrations are, in ma
cases, only required to produce features at a finite-ene
resolution—a limit placed, for example, by the energ
broadening effects introduced by core hole lifetimes in co
level spectroscopies4 and the finite lifetimes of the final qua
siparticle states in optical spectroscopy.5 Thus it is not
physically meaningful to calculate at higher resolutions. F
ther, from a practical perspective, all experiments hav
finite-energy resolution and frequently concentrate on
shifts, distortions, and changes in weight in the spectral
tures. Looking at calculated band structures, it is clear
the bands are essentially smoothly varying objects ink
space. Detailed investigation of the wave functions show
they also vary smoothly ink space.6 It might therefore be
hoped that only a sparse sampling of the Brillouin zo
would be required to obtain a good representation of
bands and hence the DOS. However, any interpolative sp
sampling scheme has to confront the band crossing prob
described in Sec. II. In the past the approach taken has
to acknowledge this problem and calculate the DOS at
very high density ofk points required to alleviate its effects
and then smear the resulting spectrum to the experime
resolution. This is clearly computationally wasteful, but
offset by the fact that many of the electronic structure
PRB 590163-1829/99/59~7!/4685~9!/$15.00
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proaches used to predict spectra used require only smal
sis sets that allow rapid matrix diagonalization of the resu
ing Hamiltonian and hence a small computational cost
each k point. However, minimal basis set approaches
necessarily restricted as to how far they can predict spe
into the conduction band, and they are not intrinsically
accurate as the more expensive plane-wave pseudopote
methods7 or other methods that include the full basis set. It
clear that if resources can be saved in the Brillouin-zo
integrations then the savings can be ‘‘spent’’ on using pla
waves, larger supercells, or more elaborate theory. In
paper a Brillouin-zone integration scheme is described
exploits the essential smoothness of the bands and avoid
band crossing problem.

II. BAND CROSSING PROBLEM

The band crossing problem is a well-known impedime
to the rapid convergence of interpolative methods.8,9 The
simple one-dimensional example shown in Fig. 1 illustra
the kind of changes that can occur in the DOS given differ
band allocations for the interpolation. At a generalk point it
is more likely that the bands do not actually cross as a re
of small interactions between the bands that break
degeneracy—rather they can be described as ‘‘kissing’’~see
Fig. 2!, getting very close at a given point, but both the upp
and lower bands remaining individually continuous althou
the character of the bands is exchanged across the ‘‘kissi
point. It is unclear as to whether any connection of the ba
betweenk points will lead to the correct topology of th
band structure in three dimensions.

III. CURRENT METHODS

Many Brillouin-zone integration techniques have been
veloped over recent years. Some common ones are br
described below, with particular emphasis placed on th
performance for predicting spectral properties.

A. Gaussian broadening

This is the simplest approach to Brillouin-zone spect
integrations.k points are distributed as evenly as possib
4685 ©1999 The American Physical Society
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throughout the Brillouin zone~either regularly or randomly
as in a Monte Carlo method!, and the DOSD(E) is formed
according to

D~E!5
1

A2ps
(

i
e2~E2Ei !

2/2s2
, ~1!

where the sum is performed over the statesi , Ei are the
corresponding energy levels, ands is the energy broadenin
parameter. This method actually converges at van H
singularities10 faster than the linear method describ
below.11 However, this only applies at the limit of full con
vergence, which is rarely required or achieved. The Gaus
broadening method is, in practice, less accurate than the
ear interpolative method for most purposes, but it is
method of choice for work that simply requires a rough id
of where the electronic states lie. It clearly does not su
from the band crossing problem, since no topology of
bands is assumed.

B. Linear interpolative tetrahedron method

The linear tetrahedron method12 is the staple Brillouin-
zone integration technique for the electronic structure co
munity. Indeed, recently Blo¨chl et al.8 have published an
‘‘improved’’ method. It is a relatively straightforward ap
proach and, hence, very attractive. The scheme is applie
dividing the irreducible wedge of the Brillouin zone int
approximately equally volumed tetrahedra, then by calcu
ing the band energies at each apex a linear representatio
the band is constructed within the tetrahedron. From t
contributions to the DOS can be evaluated analytica
However, the method suffers from the band crossing pr
lem and a poor representation of van Hove singularities
to the absence of second-order band information.11

C. Quadratic interpolative tetrahedron method

A series of papers by Methfessel and co-workers11,13,14

demonstrate the superior convergence properties of a me
based on a piecewise quadratic representation of the

FIG. 1. A simplified one-dimensional example of the ba
crossing problem. An incorrect allocation of bands can cause
matic changes in the calculated DOS.
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louin zone. This method converges more rapidly than both
the Gaussian broadening and linear tetrahedron methods du
to the more accurate treatment of the van Hove singularities
which occur whenu¹E(k)u50. To accurately describe these
points, E(k) must be known to at least second order ink.
However, this methodology does not appear to have been
widely applied by the community. A probable reason for this
is that this method is particularly susceptible to the band
crossing problem because it is a higher-order interpolative
scheme. So, while convergence for a single band is impres
sive, the method becomes relatively expensive in real sys
tems since a highk-point sampling density is required to
overcome the band crossing problem and the extra effort is
not justified. It is, however, one of the building blocks for the
scheme developed below.

D. Linear extrapolative method

The vast majority of Brillouin-zone integration schemes
use an interpolative approach. However, an alternative is to
extrapolate from a single point within the subcell of integra-
tion. This removes the need to allocate bands, circumventing
the band crossing problem completely. This approach has

a-

FIG. 2. An example of one kind of frequently encountered band
‘‘kissing,’’ for which there is some hope of dealing with in the
extrapolative method. This example consists of two quadratically
dispersive bands intersecting each other and a repulsion occurrin
along the curve of intersection. Two- and three-dimensional projec-
tions are shown~with two and one reciprocal space dimensions
removed, respectively!.
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been used by Mu¨ller and Wilkins9 who developed a linea
extrapolative method. They demonstrated the improvem
over conventional schemes by calculating a free-elec
DOS using both linear interpolative and linear extrapolat
schemes. Using 256 tetrahedra the extrapolative schem
close to convergence, while the interpolative one is a mes
spurious features.

IV. OBTAINING THE QUADRATIC REPRESENTATION

If we are to employ an extrapolative scheme, we nee
technique for evaluating the quadratic representation o
band within a given cell from information available at
singlek point in that cell.k–p perturbation theory6 provides
a technique for doing just this. Knowledge of the wave fun
tions and energy eigenvalues at thek point concerned allows
information about neighboringk points to be extracted. In
principle, a second-order expansion of the energy requir
perturbation sum over matrix elements between all state
the eigenspectrum. This has consequences for a plane-
approach that depends on iterative diagonalization. The s
mation is necessarily restricted to those few bands actu
evaluated.

Alternatively, numerical differentiation might be used
evaluate the second-order expansion of the band ener
However, the problem of band crossing is reintroduced
the bands must be allocated to enable the differentiation
tests of this approach it was found that numerical differ
tiation fails completely near any degeneracies in the b
structure and so a general scheme based on this could n
produced.

In this work the quadratic representation of the ba
structure is obtained using an extension ofk–p perturbation
theory, modified to work to second order and with nonlo
pseudopotentials, as will be described in a future paper.15

V. AN OUTLINE FOR A NEW INTEGRATION SCHEME

To summarize, the prevalent scheme for spec
Brillouin-zone integrations is currently the interpolative li
ear tetrahedron method. A low-order interpolation fails
describe van Hove singularities efficiently but is relative
simple. Since highk-point sampling densities are require
for convergence, the band crossing problem is not extre
Other schemes have been presented in the literature, but
of them have made a significant impact. The second-o
k–p approach of Wang and Callaway16 did not correctly
implement Lowdin perturbation theory~as clarified by
Loehr17!. It was thought of as an interpolative scheme,
DOS was evaluated by resampling and using a lin
method, and as a result the scheme required a very l
number of sampling points~1357 in the irreducible wedge!.
Müller and Wilkins9 used an extrapolative first-orderk–p
scheme, clearly recognizing the band crossing problem.
restriction ofk–p theory to local potentials, and the proble
of incomplete local basis sets, noted by Boykin,18 may have
reduced its use. The current work removes this restrictio

In light of previous arguments, the essential features
the method are as follows.
Extrapolative.Extrapolating away from a single point allev
ates the worst of the band crossing or ‘‘kissing’’ problem
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Piecewise quadratic.To correctly treat the van Hove singu
larities, at least a second-order expansion is required.
k–p perturbation theory.Allows access to band informatio
around a selectedk point, and hence gives the required qu
dratic expansion of the bands.
Brillouin-zone division.The Brillouin zone is divided into
arbitrary polyhedra of approximately equal volumes. The f
symmetry of the system can be utilized~Sec. VII!.
Analytic quadratic. The work of Methfessel and
co-workers11,13,14 permits a direct conversion of the piec
wise quadratic representation to a contribution to the DO
avoiding the need for resampling~Sec. VIII!.

Many of the individual elements of this proposed meth
are not new. However, they have never previously be
brought together as a single technique. Some compon
~the treatment of ‘‘kissings,’’ second-orderk–p perturbation
theory with nonlocal pseudopotentials,15 and the Brillouin-
zone division! are novel developments. Technical details
the method are now described.

VI. BAND ‘‘KISSING’’

As mentioned in Sec. II, one of the remaining problems
Brillouin-zone integrations is what to do when bands cro
or get very close to each other—‘‘kiss.’’ For interpolativ
approaches, this manifests itself as a problem of band or
ing, and it is not clear whether in general it is a soluble o
While the band ordering problem is eliminated by adopti
an extrapolative method, problems arise when samp
points land at or near kissing points~which are the points
where bands do not quite cross because there are sma
teractions between the approaching bands that repel
bands as shown in Fig. 2!. At these points the curvature o
the bands can be very large, and the radius of convergenc
the Taylor expansion is much reduced. Thus the piecew
quadratic method fails at these points because the extrap
tion sends states to a wide range of incorrect energie
some cases leading to the closure of band gaps. Clearl
there is to be any hope of a sparse sampling high-order
trapolative approach to Brillouin-zone integrations, the pro
lems associated with the kissings must be overcome.

There are many complex ways in which one could ima
ine three-dimensional sheets in four dimensions crossing
kissing, each other. In our case these sheets are the b
Given such a situation, it may appear to be an intracta
problem to develop any scheme for reducing their effect
the Brillouin-zone integration. However, on looking at som
representative band structures some generalizations ca
made. As mentioned above, the kissing problem is revea
at points with extreme curvatures—the kissing bands
close to each other but rapidly turn away at the kissing po
The points where this occurs in the band structures can
easily located by looking for those bands at any particulak
point that exhibits extreme curvatures. Those bands that b
curve strongly and lie close to each other in energy might
expected to be kissing. Following this detection it becom
clear that a vast majority of the kissings that occur are of
simplest kind—shown in Fig. 2. These involve pairs of ban
that kiss as if they cross as simple sheets. This is most cle
illustrated by the fact that the pairs of bands with extre
curvatures and similar energies frequently have parallel



tw
p

n-
h
si
o
ra
a
ea
re

or
ra
ng
n
re
se
h
ar
tr
te
t

h

b
uc
i

a
ro

—
n
ib

th

th
ng

nds
od
cal
ional
re.
e

ing
s a

am-
ons
der
A
as

di-

h
f

ign
m.
re

pect

is
tur-
this
adi-

ro-
lar
re-
ex-
ons
ratic
n be

s

d

so
is
T

di

4688 PRB 59C. J. PICKARD AND M. C. PAYNE
rections of greatest curvature, as would be expected if
three-dimensional planes in four dimensions kiss. The up
one ~in energy! curves strongly upwards, the lower dow
wards. An example is presented numerically in Table I. T
scheme now presented is capable of dealing with these
plest kissings. However, in real systems the situation is
casionally more complex. In many cases nearly degene
triplets of bands with extreme curvatures are found that c
not be treated as a combination of the simple kissings. D
ing with these more complex cases is an area of cur
research.

The scheme

This method for Brillouin-zone integration is designed f
efficient calculation of experimentally observed spect
properties where experimental and lifetime broadeni
place a limit on the resolution required. It is clear that ma
of the band kissings observed will produce spectral featu
at too fine a resolution to have any experimental con
quence. As a result, a scheme is presented that deals wit
more common kissings detailed above—the straightforw
sheet kissings. The approach taken is to make these
crossings, thus keeping the spectral weight in approxima
the correct position, but ignoring the fine structure related
the band repulsion~i.e., a small change in the spectral weig
due to the opening of a band gap!.

The simple kissings that will be treated are dominated
two interacting bands, the remaining bands playing a m
weaker role. Since the second-order Taylor expansion is
sufficient in the region of the kissing, higher-order inform
tion about the behavior of the bands is required. This is p
vided by a restricted form of Lowdin perturbation theory
see Kane6 for a review. Historically it has been commo
practice to use Lowdin perturbation theory to descr
strongly interacting or degenerate bands in ak–p approach.19

However, it has often been incorrectly applied leading to
problem being described by non-Hermitian submatrices16 as
pointed out by Loehr.17 It is likely that this error went unno-
ticed due to the large number ofk points used in earlierk–p
methods~1357 in 1

16 of the Brillouin zone in Wang and
Callaway’s16 nickel band-structure calculation!. With the
low sampling density used in the present scheme, these
rors must be avoided.

The fundamental problem in the present approach is
of the band ordering within the subcell in which the kissi

TABLE I. Curvature information indicating a simple ban
‘‘kissing.’’ i is the band index andEi the band energy.B1,2,3 are the
curvatures in the principal-axis directions of the curvature ten
and the vectorkx,y,z is the direction of greatest curvature. It
proposed that bands 18 and 19 participate in a band kissing.
band energies are close, the curvatures are extreme, and the
tions of greatest curvature are approximately parallel.

i kx ky kz B1 B2 B3 Ei

16 20.22 0.48 0.84 238.7 20.1 84.5 59.9
17 20.76 20.36 20.53 237.3 29.7 21.1 66.0
18 0.81 20.49 0.28 21495.5 2101.6 41.4 67.4
19 0.85 20.42 0.29 269.2 34.5 1507.9 67.5
20 0.43 0.88 20.17 237.2 8.7 136.3 69.0
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occurs. This can only be done simply if we assume the ba
effectively cross only in one dimension. This can be a go
approximation if the subcells are small compared to the lo
curvatures of the bands. In such a case, a three-dimens
crossing can be tracked along the direction of high curvatu
If the approximation is good, the directions will be the sam
for both bands, and this is one of the conditions for detect
the treatable kissings. The band ordering then become
one-dimensional problem, and the two bands may be un
biguously crossed as shown in Fig. 3 and Taylor expansi
for the two bands are constructed, using the higher-or
information from the Lowdin perturbation calculation.
more detailed recipe for carrying out the procedure is
follows.

~i! Look at the stack of bands for eachk point.
~ii ! Calculate thek–p expansion at each point.
~iii ! Diagonalize the curvature tensor, and note the

rection of greatest curvature.
~iv! The treatable kissings will consist of pairs of hig

curvature bands~see Table I!. For both bands the direction o
high curvature will be close~modulo a sign!, and one will
curve positively and the other negatively due to the s
change in the energy denominator of the perturbation su

~v! Having found a candidate kissing, the bands a
crossed by finding band energies either side of the sus
kissings using Lowdin perturbation theory~as corrected by
Loehr17! on the two bands concerned.

~vi! The new curvature in the high curvature direction
found by evaluating the band energies using Lowdin per
bation theory assuming the new crossed allocation, and
replaces the old curvature. The same is done with the gr
ent in that direction.

FIG. 3. An example of the scheme at work. The crossing p
cedure described in the text clearly works well for this particu
band ‘‘kissing’’ situation—the bands which were presumably p
viously kissing are forced in this scheme to truly cross. This
ample is for the conduction band of silicon, where such situati
are common. The curves are produced from the piecewise quad
representation before and after the treatment for kissing. As ca
seen from the discontinuities in the bands, there are twok points
along the slice presented, thek points are not shown since the slice
do not pass through them.
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PRB 59 4689EXTRAPOLATIVE APPROACHES TO BRILLOUIN-ZONE . . .
~vii ! The gradients and curvatures are rotated back
the original coordinate frame.

~viii ! Having looked through all bands andk points the
procedure can be repeated, since there may be several
ings mixed together.

Clearly, criteria are required as to what constitutes
strong curvature, and how close the high curvature directi
must be. Setting these thresholds will determine the tolera
to kissings, and thus appropriate values for these thresh
will depend on the resolution required in the final spectru
At present, the treatment of this threshold remains rat
crude, and is based on a weighted sum of numbers repre
ing the closeness of the directions and strength of
curvatures.20

VII. BRILLOUIN-ZONE DIVISION

So far the expansion of the band structure of a giv
system about any point in the Brillouin zone has been d
cussed. This expansion is to second order only, and in a
thing other than the case of a free electron, it will be va
only about a finite region surrounding the expansion po
Therefore it is necessary to divide the Brillouin zone into
set of subcells within which the expansion holds to the
curacy required. Thus, from the information in every subc
a piecewise quadratic representation of the band structu
constructed. The total DOS for a given band can therefore
written,

Dtot~E!5(
i

Di~E!, ~2!

whereDi(E) is the DOS contribution of thei th subcell.
It should be noted that, in contrast to interpolative me

ods, this piecewise quadratic band structure is not continu
across the subcell boundaries. This is a necessary featu
the extrapolative approach. Any attempt to join the band
the cell edges amounts to an interpolation, and the band
dering problem is reintroduced. In the example of Fig. 6
oscillatory errors caused by these discontinuities are visi
Clearly, as the size of the subcells are decreased so do
magnitude of these errors.

To produce an efficient integration scheme we have
divide the Brillouin zone in the most efficient way, with a
emphasis on good coverage of the Brillouin zone even
very low k-point sampling.

A. Commensurate subcells

One approach is to divide the Brillouin zone into com
mensurate subcells. This can be done by forming a grid
points in terms of multiples of integer fractions of reciproc
lattice vectors, keeping only those falling within the fir
Brillouin zone and constructing Wigner-Seitz proximity su
cells about each point that is retained. For example, ifG1,2,3
are reciprocal-lattice vectors, then a point in the new grid
given by

kabg5a
G1

l
1b

G2

m
1g

G3

n
, ~3!
to
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wherea, b, andg are integers labeling the grid, andl , m,
andn are fixed integers chosen to give an even distribut
of k points in reciprocal space~i.e., approximately spherica
Wigner-Seitz proximity subcells!. If l , m, or n are even, then
the grid can be shifted to balance the points about the or
in the associated direction.

If the system concerned has any symmetry in addition
the inversion symmetry that will always be present, then
subcells may be symmetrized. However, it is clear that
low k-point density the symmetry will not be well used
Also, the grids produced by this method tend to have po
along high-symmetry directions, making band kissings m
common. Naively shifting the grid produces problems w
symmetrization. However, to overcome this problem o
may keep the cells fixed and shift thek point of expansion
within the subcell.

B. Full use of symmetry

Although many modern electronic structure calculatio
concentrate on systems with ever larger unit cells and e
reduced symmetry, it is clear that there are still many pr
lems that could benefit from the use of symmetry, for e
ample, highly computationally intensive techniques such
the GW method for calculation of quasiparticle spectra.5 To
this end, a technique for efficiently exploiting symmet
even at lowk-point densities is now presented.

~1! Find the first Brillouin zone for the system of inte
est using the Wigner-Seitz proximity cell definition for sym
metry reasons.

~2! Find the irreducible wedge, assuming the full sym
metry of the lattice type. This is constructed from the Br
louin zone by the introduction of a set of planes that a
dependent on the lattice type.

~3! Decide how many times to recursively halve the vo
ume of the subcells—starting with the irreducible wedge. F
example,n times will produce 2n subcells andk points.
There is considerable freedom as to how to halve each
cell. It is important to try to make each subcell as close
spherical as possible so as to avoid ‘‘long’’ directions
which the second-order Taylor expansion will be less w
converged. So, the subcells are divided perpendicular to
‘‘long’’ direction, which is defined by consideration of th
moment of inertia tensor of the cells if they are treated
uniform solids. The division is applied at a point where the
is equal volume on either side of the cut.

~4! Having constructed the subcells, thek points are
placed at the center of mass of each cell~again treated as a
uniform solid!.

~5! So far, full lattice symmetry has been assumed.
the case of a reduction in lattice symmetry that can occu
atoms are placed on the lattice, it is necessary to determ
which symmetry operations generating the star remain a
symmetrization. The irreducible wedge~already divided in
subcells! is then repeated for each symmetry operatio
which results in distinct points in the Brillouin zone give
the symmetry of the system of interest.

Examples of the application of the procedure outlin
above are shown in Fig. 4. It is clear that this approa
makes full use of the system’s symmetry. In the limit of
singlek point for a system with full symmetry, the one ce
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FIG. 4. ~a! A simple cubic Brillouin zone, with the full symmetry irreducible wedge divided into two subcells.~b! Hexagonal Brillouin
zone, with full hexagonal symmetry and the irreducible wedge halved twice.~c! fcc lattice Brillouin zone with full cubic symmetry.~d! A
hexagonal Brillouin zone with reduced symmetry, with the irreducible wedge undivided.
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generated is the irreducible wedge. It should be noted tha
any integration routine based on interpolation it is impossi
to contemplate the use of a singlek point. Also, in general,
the k points generated by this technique do not fall in dire
tions of high symmetry, thus reducing the problems ass
ated with band kissing and crossings. However, it sho
also be pointed out that this method is not particularly use
if high k-point sampling densities are required as the po
hedra produced can get quite complex. Also, there is li
gain due to symmetry at high density in comparison to
commensurate subcells described in Sec. VII A. The
proach based on the division of the irreducible wedge is
or
e

-
i-
d
l
-
e
e
-
-

signed for situations of high symmetry and for Brillouin
zone integrations requiring lowk-point sampling density.

VIII. ANALYTIC QUADRATIC DENSITY OF STATES

The final problem to be solved is to perform Brillouin
zone integrations for the DOS and other spectral proper
from the piecewise quadratic representation of the b
structure. Clearly, one could resample the representatio
find the band energies on a finer grid and simply apply o
of the standard methods for Brillouin-zone integration d
scribed in Sec. III. This is not appealing, since the corr
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analytic form for the bands around the critical points is lo
Furthermore, it is a computationally costly route. The id
approach would be to take the quadratic representation
turn it directly into a contribution to the total DOS. Since th
DOS of a free electron~with its quadratic dispersion! has a
well-known, and simple, analytic form this should be po
sible. The significant complication is that the contribution
the DOS comes from a finite region in reciprocal space~i.e.,
the subcells described in Sec. VII!. An expression for the
density of states for a given band is

D~E!5E d„E~k!2E…d3k5E
S

dS

u¹kE~k!u
, ~4!

whereS is a constant energy surface~CES! at energyE. For
a spherical dispersion relationshipE(k)5Bk2, u¹E(k)u
52Bk, and, hence,

D~E!5E
S

dS

u¹kE~k!u
5

4pk2

2Bk
5

2pAE

AB3
, ~5!

where spherical symmetry has been used to simplify the
face integral.

The problem must now be extended to the situation
which the surface integration is restricted to a finite volu
in reciprocal space~bounded by a convex polyhedron!. For
simplicity consider a cube, with the origin at its cente
Clearly, for smallE the expression for the DOS will be un
changed. However, at some energy the CES must start to
the polyhedron. At this energy and above, the DOS will
reduced~since the included surface is reduced!. This energy
is known as asingularity. Singularities occur when the CE
strikes the faces, edges, and vertexes of the polyhedron
some point the entire CES will be outside the polyhed
and the DOS will become zero. It may appear to be a d
cult problem to track this change in the DOS, and indeed
problem has been calledimpossibleby Lehmann and Taut.12

But the work of Methfessel and co-workers11,13,14presents a
theoretical solution to this problem for tetrahedral volum
and a practical scheme for its implementation. For the p
poses of the current approach the implementation of Me
fessel and co-workers must be extended beyond tetrahed
arbitrary polyhedra. This is described elsewhere.21

IX. EXAMPLES

Having described a new scheme for spectral Brillou
zone integrations, we now give some examples that dem
strate the quality of Brillouin-zone integrations that are p
sible with this scheme. It should be noted that the techni
is not designed for the ultimate in accuracy, but rather a
method for rapidly obtaining the general features of a sp
trum. In the following examples, the DOS is presented
units of number of electrons per unit cell per unit of ener
~electron volts in Figs. 5 and 8 and unity in Figs. 6 and 7!.

A. Toy models

1. Free-electron dispersion

The Brillouin-zone integration method is applied aft
performing an electronic structure calculation with the ion
.
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potentials set to zero. A simple cubic cell is used, and
single integration subcell is the irreducible wedge. As e
pected~since the free-electron dispersion is quadratic!, the
DOS is fully converged using a singlek point as can be see
in Fig. 5. A selection of bands are also shown that are a
extrapolated from a single sample point. This is not an
tirely trivial result, since in the case of an interpolative a
proach there would be problems with band crossings. T
result should be compared to the linear extrapolative fr
electron test of Mu¨ller and Wilkins,9 which required 256
tetrahedra for a similar level of convergence.

2. Simple cubic s-band test

The convergence of the new scheme is now examined
a simple cubics band, the example discussed previously
Boon et al.11 The dispersion relation for this system is

E~k!52 1
3 @cospkx1cospky1cospkz#. ~6!

The gradient and curvature information for the piecew
quadratic representation required for the new scheme is

FIG. 5. Density of states for a free electron, calculated in
simple cubic cell using a singlek point, displaying the expected
(E2E0)1/2 behavior and the corresponding free-electron ba
structure. The coordinates indicate points in the Brillouin zone
units of reciprocal-lattice vectors.
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tained directly from the dispersion relation. Boonet al.11

looked at the extreme convergence properties and found
analytic quadratic method to work well, as it deals with t
van Hove singularities. Here the emphasis is on the low s
pling densities.

It is clear that, in comparison with the free-electron ca
the convergence is slow, as shown in Figs. 6 and 7. This
be expected—the dispersion relation contains terms to
orders. Particular problems are encountered on the platea
the DOS—the spikes being due to overlap in energy of
piecewise quadratic bands due to an inadequacy of
second-order expansion. However, in keeping with the p
losophy of the approach, the application of a Gauss

FIG. 6. s-band DOS with no smearing. The dashed curve
obtained using 8k points in 1

48 of the Brillouin zone, while the solid
one is obtained with 128k points. Note the poor convergence o
the plateau.

FIG. 7. Convergence ofs-band DOS with smearing. A Gaussia
smear of 0.1 is applied, producing the solid curves. The das
curves are the differences of the unconverged DOS from one
verged at 128k points.
he

-

,
to
ll
of
e
he
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n

smearing to the DOS results in good convergence at
k-point sampling densities.

B. Total density of states of diamond

Figure 8 shows a series of total DOS calculated fo
two-atom primitive cell of diamond using an increasin
number ofk points in the irreducible wedge of the Brilloui
zone. The calculations were performed using the loc
density approximation, a plane-wave basis set, and optim
nonlocal pseudopotentials.7 The most important conclusion
is that the essential features of the spectra are obtained
very low k-point densities and, somewhat surprisingly, for
few as two points in the irreducible wedge. Given the lo
resolution of many experimental spectra, it is clearly not n
essary to push the calculations to very high sampling de
ties. It should be pointed out that any interpolative meth
would require more than a single sample point just to p
form the interpolation, regardless of the quality of the in
gration.

X. LINEAR EXTRAPOLATIVE METHOD

It is straightforward to restrict the approach describ
above to the first order only, producing a linear extrapolat
approach. The polyhedral subcells~see Sec. VII! can be di-
vided into tetrahedra~each face can be divided into triangle
and the fourth apex placed within the cell!. Then the formula
for the conversion of the first-order expansion of the ban
into a DOS contribution given by Blo¨chl, Jepsen, and
Andersen8 can be applied. A comparison of the results of th
linear approach to the full quadratic scheme is shown in F
8. It is clear that the linear extrapolative approach still allo

s

d
n-

FIG. 8. Convergence of the DOS of diamond for linear a
quadratic extrapolative approaches: two-atom diamond primi
cell, 40 bands, and an energy cutoff of 600 eV. No smearing
applied. Thek points are contained within148 of the Brillouin zone.
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low k-point sampling, but it can be seen that the behavio
the band thresholds is poor. However, an advantage of
linear approach is that it requires no perturbation summat
and hence the band truncation error mentioned abov
avoided.

XI. SUMMARY

In summary, a second-order extrapolative approach to
integration of spectral properties has been developed. It
ploits the smoothness of band structures seen throughk–p
perturbation theory and uses exactly this theory to genera
piecewise quadratic representation of the energy ba
69

als

.
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which is then converted analytically to a density of stat
The Brillouin zone is efficiently divided into subcells t
make full use of the symmetry of the system of intere
Tests of the scheme show that the essential features of s
tra are obtained for very fewk points within this approach
and even a restriction to linear extrapolation gives rise t
useful scheme despite the poor treatment of the van H
singularities.
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