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Relativistic nuclear magnetic resonance chemical shifts of heavy nuclei
with pseudopotentials and the zeroth-order regular approximation
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We present a method for the first principles density functional calculation of relativistic all-electron
nuclear magnetic resonance chemical shifts using pseudopotentials. The method is based on the
gauge including projector augmented wave approach of Pickard and NRiws. Rev. B63,
245101(2001)]. Relativistic effects are included at the level of the scalar-relativistic zeroth-order
regular approximation. The method allows chemical shifts of large, low symmetry structures
containing heavy elements to be calculated efficiently. We demonstrate its success for a range of Se
and Te containing molecules. ®003 American Institute of Physics.
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I. INTRODUCTION atom in various complexes. This allows for the efficient cal-
Nuclear magnetic resonand®MR) experiments on culation of the chemical shielding of the light elements in the

heavy nuclei present both experimental and theoretical chaBYStém- It has been shofihat the contribution to the

lenges. As measurements of the chemical shift of nuclei beSheémical shift from the core electrons is rigid and so the

yond the second period are becoming increasingly commorfalculation of the shielding of the heavy atom itself is pos-
it is important that accurate theoretical techniques are avaifiP!e- However, this poses a significant problem as the
able to predict and interpret these experimental results. FirfS@udo-wave-function differs significantly from the all-
principles density functionalDFT) calculations have been €l€Ctron wave function in the core region.

shown to provide an excellent description of the chemica| Recently, Pickard and Mad? have presented a gauge
shieldings for compounds containing light elementsow- including extension to Blchl’'s projector augmented wave

11 : H
ever, the extension to higher atomic numbers poses two di¢PAW)™ method which allows for the calculation of all-
tinct challenges; first dealing with the large number of eleclectron NMR chemical shifts with pseudopotentials. This

trons which must be explicitly considered and secondallows the use of pseudopotentials for all atoms in the system
accounting for the effects of special relativity. to obtain maximal computational advantage. .
Relativity strongly affects NMR shielding parameters as ' this paper we show that this gauge including projector
these parameters are dominated by the region of space né#fgmented wave(GIPAW) approach provides a natural
to the nucleus. In this region the electrons experience thfamework for the inclusion of relativistic effects in core
strong nuclear potential and have a large local momentunProperties such as chemical shifts. The relativistic nature of

This is true for both the valence electrons as well as thdn€ valence electrons close to the core is of paramount im-
tightly bound core electrons. portance and we derive relativistic GIPAW operators that

Fully relativistic calculations, based on a four- t@ke this into account.
component Hamiltonian, are time consuming and, at then_ THEORY
present time, limited to small systerhsVarious two-
component formalisms have been developed and one of tHfe Introduction

most Simple and elegant is the zeroth-order I’egular apprOXi- We begin by reviewing the Zeroth_order reguiar approxi_
mation (ZORA) >~ mation to the Dirac equation. We then discus$dBls PAW
Regardless of the method employed, all-electron calcuscheme and show how it may be used to calculate all-
lations on systems containing heavy elements will be comglectron observables from a pseudopotential calculation. Us-
putationally demanding due to the large number of eIectronqng a gauge invariant extension to PAW we derive a pseudo-
A more computationally attractive solution would be to useqamiltonian and pseudocurrent operator from the ZORA
pseudopotentials, which treat only the valence electrongiamiltonian and show how scalar relativistic all-electron

fully. Pseudopotentials are most commonly employed withinchemical shifts can be obtained from pseudopotential calcu-
a frozen core approximation however, in principle this con-|ations.

dition can be relaxefl Kauppet al.”® have used pseudopo-
tentials to represent the core electrons of a transition metd. Zeroth-order regular approximation

We start with the time-independent single particle Dirac
dElectronic mail: jry20@phy.cam.ac.uk equation for an electron in external magnetic field,
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V(r) Co T D) D) tial K=1, in which case Eo(.g)lzeduces to the nonrelativistic
com V(r)—2c? ( |X>): ( |X))’ 1) Levy-Leblond Hamﬂtomaﬁn Close to the nucleuk <1

and thus relativity has a direct influence on the electrons. To
where o are the Pauli matrices arlis the speed of light. a good approximation a valence electron in this region will
The canonical momentum,s, is given by @=p experience the strong Coulomb potential, screened by the
+ (1/c)A(r) whereB=V XA(r). Within density functional core electrons, independent of the chemical environment.
theory V(r) is the effective Kohn—Sham potential given by Consequently we may calculaté(r) using the potential
the sum of the nuclear, Hartree, and exchange-correlatioscreened by the core electrons generated from an atomic cal-
potentials. The Dirac wave function has two spinor compo-ulation.
nents,|®) and |y), called the large and small component, The final two terms in Eq(8) represent spin—orbit cou-
respectively. The large and small components are related pyling and the coupling between the spin and magnetic field,

|x)=X|®), where respectively. We neglect these two terms, the remaining
1 E—V(r)| ! terms in Eq.(8) form the basis of the scalar relativistic ap-
X= —( —2) o (2)  proximation. The effects of spin—orbit coupling can be con-
2c 2c siderable for heavy elements.g., Ref. 4and is known to be
It is therefore possible to express the Dirac equation irsignificant for the shielding of light elements bonded to
terms of the large component only, heavy atoms. However we shall examine only scalar relativ-
(V(1) +CamX)| D)= E| D). (3 st effects.

In order to calculate magnetic response properties, such
The large componentb) is not normalized. We intro- as NMR chemical shieldings, we require an expression for
duce a normalized two-component wave functigf) given  the induced orbital current density. We use the continuity

by equation,
| W) =(V1+X'X)|®). 4 INzora(r,t) VI ma(r ) )
Traditionally Eq.(3) is simplified by assuming thai? at ZORAL

<4c?, which leads to the relativistic Pauli approximation. and note that within the zeroth-order approximation the
However, for a divergent potential such as a Coulomb potengharge  density, nyopa(f), IS given by Nyora(r)
tial there will exist a region, close to the nucleus, in which AN= (W00 SnS(r —17) | W z0ra). The derivative with respect

expansion based on the Pauli assumption is not valid. Thg, time can be obtained by using the time-dependent form of
size, and hence importance, of this region will increase withe 7zORA equation,

atomic number. To avoid this problem we follow the ap-

roach of van Lenthkand rewrite Eq(2) as 9|V z0rA)
P a(2) —a =Hzoral ¥ z0RA) - (10
c -1
XZ(ZCZ—V(Y))(1+ 2C2—V(r)) T ®) The electric current operatodzoga(r'), can thus be

written as
If we assume thaE<(2¢?—V(r)) and expand to zeroth

order inE/(2c¢?—V(r)) we obtain the so-called zeroth-order , . , ",
regular approximation(ZORA). The assumption thaE Jzora(r") =K(r")| I°(r") - C Ll 1D
<(2¢?—V(r)) remains valid close to the nucleus, where the
Coulomb potential is divergent. It can be shown that ZORAWhere
will be more accurate for low energy valence electrons than plr M|+ e )r'|p
deep core states as a result of the approximations Afade. J°(r')= 5 : (12)
The ZORA Hamiltonian is
K(r) C. Projector augmented wave
Hzora= o —— o-m+ V(1) 6) Van de Walle and Bloh*® have introduced a method in
which all-electron properties can be extracted from a pseudo-
where potential calculation. In their projector augmented wave
V(r))| t (PAW) approach the all-electron wave functidnis derived
K(r)= ( 1- Z_CZ_) (7)  from the pseudo-wave-functioh by means of a linear trans-
formation, 7,
We can rewrite Eq(6) as -
HZORA:V(r)erT 7T+ Fa-[VV(r)Xp] where
kmes. ® T=1+ 2 [| o)~ dro)] (Brol, (14
Cc n
The local functiorK (r) determines the influence of rela- |brn), |Prn) are all-electron and pseudopartial waves

tivity on the system. For a valence electron in a weak potenand (pg,| are a set of projectors such thei)Rn|<~z>R,m>
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= Sgrr' Onm. Each projector and partial wave is an atomic-wherej(®) is the first-order induced electric current.

like function centered on an atomic s and the indexh Following the procedure outlined in Ref. 10, to calculate
refers to both the angular momentum quantum numbers arihe shielding tensor we must derive relativistic forms of the
to an additional number which is used if there is more tharimagnetic pseudo-Hamiltonian and the pseudocurrent opera-

one projector per angular momentum channel. tor. The scalar relativistic ZORA Hamiltonian is
For each atom we define an augmentation redign K
The following conditions are imposed) outsideQg| ¢rn) Hzora=V(r)+ @5 . (20
and| ¢r,) coincide,(ii) outsideQ) the projectorgpg,| van- 2
ish, (i) within Qg the | ¢r,) form a complete set for the In the presence of a uniform magnetic field, and
valence wave functions, an@v) the augmentation regions choosing the symmetric gaug&(r)=3BXr, we can expand
belonging to different atoms do not overlap. Eq. (20) in powers ofB,
Under these conditions, for an all-electron opera®or K K K
the corresponding pseudo-operator, is given by Hzora=V(r)+ pE p+ 7c B-L +B-L T +0O(B?). (21)
0=0+ 2 [Brn){brnlOldrm —(brnlOldrm)] Applying the GIPAW transformation to E¢21) we find
Ron.m that the ZORA pseudo Hamiltonian is identical in form to the
X{Pr.ml- (150  nonrelativistic pseudo-Hamiltoniar(see the Appendix

Relativistic effects are confined to the nonlocal part of the
pseudopotential\/g', which is generated from a relativistic
atomic calculation.

To first order inB the pseudo-Hamiltonian can be writ-

ten

We may use Eq(15) to calculate all-electron observ-
ables from pseudopotential calculatioris.g., hyperfine
parameters® electric field gradient®® core level
spectroscopy!’ However, for magnetic response properties
Eq. (14) is not sufficient. In a uniform magnetic field a rigid
translation of all the atoms in the system by a vettcauses — 1 ol
the wave functions to pick up an additional field-dependentizora=75pP"+V (f)+; VRt 56

L+ RXv’QJ) ‘B,
R

phase factor, (22)
(r|Wwp)=eW2rxB(r—t|w ), (16)  where
The wave functions reconstructed using the PAW opera- ! |

tor of Eq. (14) do not transform according to E¢L6). In ve==[r,VR]. 23

order to preserve translational invariance in a magnetic field

the PAW method was generalized in Ref. 10 leading to the By a similar approach we obtain the GIPAW current op-

GIPAW approach. Within GIPAW the field-dependent trans-erator from Eq.(11);

form operator,7g, is - BX[’

_ _ _ J(r")y=J°(r")— 5

To=1+, el RXB| g ) — | bR ] (Pr,nle™ V2T R¥B ¢

R, .
" 17 X[AJR(r)+AJ%(r") e (2rRxB, (24)

|r ’><I’ ’ | + ; e(i/2<:)r'R><B

In the following, we indicate with a bar the pseudo-wave-where

functions and operators obtained using the operator by

analogy to Blehl's use of the tilde. The GIPAW pseudo- AJg(r/)ZE PR bRl K(T)IP(r")| b m)
operatorO =7, O7g corresponding to a local or a semilocal nm

operatorQ s given by ~(Bral () br ) 1Pl (29
6:0+R§n:m e/ RXBIF is the paramagnetic augmentation operator, and
o _ _ a o B><(r’—R)E - , )
X[( g e 2IRXBQgli/2)TRXB oy AJp(r')=— T [Pr ) [{BrnlrYK(r")

_ <<~15R,i |e—(i/2c)r-R><BOe(i/2c)r-R><B|’("ﬁR’m>]

X<6R’m|e—(i/20)r'RXB. (18)

X<r,|¢R,m>_<?¢"R,n|r’><r,|?¢;’R,m>]<5R,m| (26)

is the diamagnetic augmentation operator.
. o In the nonrelativistic limit,K=1 and we recover the
D. NMR chemical shielding form of the GIPAW current operator obtained in Ref. 10.

tio between a uniform external magnetic fieB, and the contained only within the atomic all-electron matrix ele-

induced magnetic fieldB{>(r), ments. _ _ .
Pickard and Mautf use density functional perturbation

- 1 : r—r' theory to deri ion for the induced tin both
Dy I STy ry to derive an expression for the induced current in bo

Bin (1) (B c f i )x|r—r'|3’ (19 finite and infinitely periodic systems. Following the same
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procedure we obtain identical expressions using the modifie®ABLE |. Values of core shieldings for Se and Te from relativistic and
GIPAW augmentation operators, E4&5) and (26). nonrelativistic calculations.
The total valence current is given by the current due to

the pseudized valence electrons plus the diamagnetic and — écme —
paramagnetic augmentation currents. We could combin€©™ Core Nonrelativistic  Relativistic
these three contributions and apply the Biot—Savart law te 1s2s2p 3s3p 3d 2932.12 2992.31
find the total valence shielding. Instead we follow Ref. 10Te 1s2s2p3s3p4s3d4p4d 5307.39 5568.31

and take advantage of the linearity of the Biot—Savart law to
solve for each of the three current contributions giving;
Tpare, the shielding from t.he response of the pseudged Vaithin 1 ppm using a plane-wave cut-off of 80 Ry, large
lence electronsg 4 the shielding from the diamagnetic GI- . .
PAW current augmentation, and, , the shielding from the supercells, and a>22>2 Monkhorst—Pack-point grid. Al

g ' P 9 calculations used the Perdew—Burke—Ernzefthekchange-

paramagnetic GIPAW current augmentation. When added tg . ) . -
the contribution due to the core electro calculated correlation functional. The chemical shielding tensors due to
ZuQOI’E’

. : : . _the core electrons where calculated using the Lamb
separately in an atomic code, we obtain the total chemical, . 1o it relativistic equivaleR? (neglecting spin de-
shielding. The core and bare contributions are unaffected b q 9 g sp

using the ZORA current. However, both the diamagnetic an}endent te”.”s The resglts are given in Tqble . Nu_m_er_ous
schemes exist to treat single atom calculations relativistically

paramagnetic augmentation terms are modified from their : . . :
nonrelativistic forms by the inclusion of the factor I&f with mmor_c_omputatmngl CQSt' To be consistent with our

scalar relativistic approximation we use thaveraged form
of the radial relativistic Kohn—Sham equatidisThis in-

E. Discussion cludes the effects of spin—orbit coupling on the orbital mo-
For the pseudocurrent operator, EQ4), as for the j[ion of the glectron§ but neglegts any shielding effects of the
pseudomagnetic Hamiltonian, E@2), we find the effects of induced spin density. In principle we could use a ZORA-
relativity (through the inclusion oK) are contained purely based atomic code. _ _
within the GIPAW augmentation terms. This is due to the Tzhze pseudopotentials used were of the Troullier—Martins
fact that the region in whiclk # 1, where the electrons can form.”" For Se only the 4 and 4 states were treated as
be considered to be relativistic, is localized close to thevalence, states below these in energy were included in the
nucleus. For the current operator the augmentation terms af@re- A pseudization core radius of 1.9 bohr was used. For Te
given by Eqgs(26) and(25). For the pseudo-Hamiltonian the the core contained all states exceptdnd %, which were
augmentation term is just the nonlocal part of the pseudopot-feated as valence. The pseudization core radius was 2.2
tential. bohr. For both elements, the GIPAW augmentation used two

As relativistic effects are confined to the GIPAW aug- Projectors in each of the, p, andd channels. For the first
mentation terms, the majority of any computational imple-fOW €lements the d states were treated as core states. The
mentation of this approaclie.g., the calculation of the cutoff radii for C a_nd F were 1_.6 and 1.3 bohr, respectively,
ground state charge density, the perturbed and unperturbéd the pseudization core radius for H was 1.2 bohr.
wave functions, and so dmeed not be altered from a non-
relativistic implementation. Only the calculation of the Gl- g, Results

PAW augmentation terms differ through the inclusion of the . oo
local function K(r), which requires only a single matrix NMR chemical shieldings were calculated for a range of

overlap. These augmentation terms depend only on thgelénium and Tellurium compounds chosen to span the
atomic species and need only be calculated once. consghemical shift range for each element. For all molecules the

quently, there is essentially no extra computational cost asgeomgtri;g were optimized using relativistic pseudo-
sociated with the inclusion of relativistic effects within the POtentials: No symmetry constraints were applied to obtain
ZORA/GIPAW approximation. a realistic estimate of the level of accuracy obtainable for

large, low-symmetry structures.

Nonrelativistic calculations were performed with
pseudopotentials generated from a nonrelativistic atomic
code and used GIPAW augmentation operators in their non-

The methods described in Sec. Il were used to examingelativistic (K=1) form. Relativistic calculations used
the chemical shielding in a range of selenium and telluriumpseudopotentials generated from a relativistic atomic code.
containing compounds. These elements were chosen as 3be relativistic GIPAW operators derived in Sec. IID were
and Te have been the focus of previous first principles dendsed. In order to examine the effect of the relativistic GIPAW
sity functional studies allowing us to compare our pseudopoaugmentation operators, mixed calculations were also per-
tential results with all-electron calculations. formed using relativistic pseudopotentials and nonrelativistic
GIPAW operators.

The most stringent test of calculated shieldings is the

The method described in Sec. Il D has been implementedomparison with experimental absolute shieldings. When
in a parallelized plane-wave pseudopotential electronic struazomparing relative shifts a large proportion of the effects due
ture code. The chemical shielding tensors were converged to relativity cancel. Absolute shielding scales exist for most

IIl. CHEMICAL SHIELDING OF Se AND Te
COMPOUNDS

A. Implementation
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TABLE II. "’Se chemical shieldings. Comparison of methods. TABLE IV. '%Te chemical shieldings. Comparison of methods.
S0t NONrelativistic 8y, relativistic Sior NONrelativistic 8y relativistic
Molecule GIPAW SR-MZ GIPAW Experimerit Molecule GIPAW R-MSZ GIPAW R-MSZ Experiment
SeH, 2138.6 2198.1 2162 TeH, 3591.3 38339 37614 4009
SeCHs),° 1734.5 1668 1803.2 1830 Te(CHg),° 2779.9 2868.2 3053.10 3050.3 3388
SeR 1003.7 953 1079.8 1199 Te(CHy) 4 3026.6 3018.6 3263.0 3189.2 3455
SeR 544.7 494 624.1 747 TeFRs 2180.6 2260.0 2416.8 2448.1 284530
SeHCH, 1911.3 1837 1975.3 1985 (TeCRy),¢ 600.1 528.0 890.06 614.3 1066
(TeCR),¢ 665.5 957.59
Mean absolute errbr 118 63
Mean absolute errbr 511 198
aReference 24.
PRevised experimental resultsee the tejtcollected in Ref. 24. “Reference 25.
‘Staggered—staggered conformation. PRevised experimental results as Ref. 25.
dRelative to revised experimental results. ‘Staggered—staggered conformation.

9As we use nonsymmetrized geometries slightly different values are ob-
tained for the two Te atoms.

light nuclei, however they have been determined for only aRelative to revised experimental resuits.
few heavy nuclei. Experimental shielding scales for Se and
Te have been determined by Jameson and Janiéseow- tial treatment all these states are included in the core. The

ever their analysis explicitly neglects any contribution to therelativistic approximation employed for Te in Ref. 25 is

chemical shielding from a spin-density induced by PN ased on the scalar relativistic Pauli approximation to the

orbit coupling. It is therefore to be expected that calculations,; . . . .
o L L irac equation. A mixture of experimental and optimized
performed within the scalar relativistic approximation should k .
eometries were used in Refs. 24 and 25.

be in reasonable agreement with shieldings on this shieldin In Tables Il and IV we also present experimental results

scale. Howgver or_ne cann_ot deduce anything about the |mpo(r)—n the scalar-relativistic absolute scales of Ref. 26. These
tance of spin—orbit coupling by such agreement.

! . scales are based on an estimate of the relativistic correction
In a recent papéf it was claimed that the effects of : . - ;
. . ! Co . to the diamagnetic free atom shieldings. In Ref. 25 the esti-
spin—orbit coupling on Te absolute shieldings is lafgp-

proximately 1700 ppm It is clear that more work on the mate for Te is discussed and it is shown by a *fully-

. . . . ... relativistic Dirac DFT” calculation on the free Te atom that it
effects of spin—orbit coupling on the shifts of fourth and fifth is a severe overestimate. In Ref. 25 a scale reduced by 900

row elements is necessary, in particular to define reliable . , .
- - ppm is proposed. We concur with this result, and propose
absolute shielding scales for Se and Te. Work on extendin o S .
. . : . . that a similar reduction is necessary for selenium. We calcu-
our pseudopotential method to include spin—orbit effects i . L .
ate the difference between the relativistic and nonrelativistic

in progress. o .
. free atom shielding to be 61 ppm compared to the estimate of
Although we suggest that the only true comparison to300 opm of Refgze Accorr)gingly WF; propose a revised
experiment is provided by relative shifts, absolute Shieldingsshielding scale réducéd by 239 ppm

provide a good comparison to pth(_er first principles C?"Cu'a.' As can be seen in Table I, for selenium the agreement
E'rggfés C”a I;:EIdatﬁ;j @?]se?gtgvjigiﬁln?ifstarﬁini?r:;rsaézﬁgt 'Between our nonrelativistic calculations and Ref. 24 is good.
' ! P b Y \We find that the inclusion of relativistic effects typically in-

;ui\r;g::onal results from Ref. 24 for Se and Ref. 25 for Te arecreases th&Se absolute shielding by 60—70 ppm. The mean

The first principles DFT results of Refs. 24 and 25 areabsolute deviation from the revised experimental shieldings

. . is 118 ppm in the nonrelativistic case. Relativistic calcula-
based on Slater-type atomic orbitals and use a frozen core . - :

S tions reduce this deviation to 63 ppm. Most of the difference
approximation. It should be noted that the frozen cores em;

. . baetween relativistic and nonrelativistic calculations cancels
ployed in these calculations are smaller than the cores use

in our pseudopotential calculations. For example, in Ref. ZziNhen comparing the chemical shifts relative ta(Gé;).,
the 35, 3p and 3 levels of Se and in Ref. 25 theddevels
of Te are included in the valence levels. In our pseudopotenragLE v. Experimental and calculated®Te chemical shifts for a range of

compounds.
TABLE Ill. Experimental and calculatetiSe chemical shifts for a range of Nonrelativistic Relativistic Experimeht
compounds.

Te(CH,)," 0.0 0.0 (0.0

Nonrelativistic Relativistic Experimeht TeH, —8114 —780.8 —621

Te(CHs), —246.8 —209.9 —67
SECHs)," (0.0 (0.0 0.0 TeF, 599.3 636.3 543130
Seh —404.1 —394.9 —3459) (TeCR),° 2179.8 2163.0 2321
Sefy 730.8 7235 63@) (TeCR),° 2114.4 2095.5
Sek 1189.8 1174.0 1083
SeHCH, —176.8 -172.1 —1559) #Experimental results collected in Ref. 25.

bStaggered—staggered conformation.
#Experimental results collected in Ref. 24. °As we use nonsymmetrized geometries slightly different values are ob-
bStaggered—staggered conformation. tained for the two Te atoms.
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TABLE VI. Selenium shieldings: Effects of relativistic GIPAW operators.

ZORA GIPAW operators Nonrelativistic GIPAW operatoPs
Molecule 6bare 5dia 5para 5tota| 5bare 5dia 5para 5t0ta|
SeH, 45.71 8.02 —847.92 2198.11 45.71 8.25 —890.35 2155.90
SeCHs), 33.25 8.00 —1230.33 1803.22 33.25 8.23 —1291.61 1794.64
Sek -0.37 8.40 —1920.57 1079.76  —0.37 8.59 —2005.91 994.62
Sek, —-8.53 7.78 —2367.44 624.12 —8.53 8.00 —2480.92 510.86
SeHCH 38.50 8.01 —1063.53 1975.29 38.50 8.23 —1116.62 1922.42

@Using relativistic pseudopotentials and the relativistic GIPAW current operators of this work.
bUsing relativistic pseudopotentials and the nonrelativistic GIPAW current operators of Ref. 10.

the standard for Sesee Table ll. In this case the maximum term are proportional to &7. The 1t3 character ofd,,,
change in the chemical shift on including relativity is just 9 weights the matrix elements strongly into the region close to
ppm, which occurs for Sef the nucleus, where the factor Kfdamps their contribution.

As expected, the effects of relativity on the Te shieldings |t s clear that the influence of relativity on the valence
are much greater than for Se. Relativistic effects increase thgiectrons in the core region is a significant factor in the NMR
absolute shieldings by 200-300 ppm and decrease the me@Remical shielding and it cannot be accounted for using rela-
absolute deviation from the revised experimental shielding$jyistic pseudopotentials alone.
from 511 to 198 ppm(see Table IV. Again most of this Finally we note that from Tables VI and VII it is clear
difference cancels out if we compare the chemical shifts relagyat the dominant contribution to the chemical shifts in Se
tive to the Te standard, which is [&Hs),. Here the maxi-  and Te comes from the paramagnetic augmentation. Pseudo-
mum change is 37 ppm for TgF The nonrelativistic Te potential methods such as Refs. 28 and 29, which do not take
shieldings are in close agreement with Ref. @&ble V).  account of the pseudization of the valence wave functions,

The relativistic shieldings are also in broadly good agreetgnnot correctly describe the chemical shifts of nuclei
ment but we note that our results are consistently closer tQeavier than Ne.

the experimental values. This is most likely due to a combi-

nation of a more complete basis set, and the fact that the

ZORA method provides a better description of valence elec-

trons than the Pauli approximatiSnHowever, a detailed

comparison of these methods is beyond the scope of the/. CONCLUSIONS
present work.

In Tables VI and VIl we compare calculations performed  We have presented a method for the efficient calculation
with relativistic pseudopotentials and both relativistic andof NMR shielding tensors for heavy elements. Computa-
nonrelativistic GIPAW current operators, so as to assess thional efficiency is obtained by using pseudopotentials to re-
importance of the ZORA-GIPAW correction. We also breakduce the number of electronic degrees of freedom. Relativity
down the contributions to the total chemical shieldings of thes introduced by means of the scalar relativistic ZORA ap-
valence electrons. The bare terfge Will be identical in  proach to the Dirac equation. Using this method a scalar
each case. From Tables VI and VIl it can be seen that theelativistic calculation on Tellhas roughly the same com-
diamagnetic contribution is only slightly smaller using rela- putational cost as a nonrelativistic calculation on JOiH
tivistic operators, but the paramagnetic term is reduced sigeontrast to a traditional all-electron approach. This opens up
nificantly. Combining the GIPAW augmentation operatorsthe possibility of calculating the chemical shielding of heavy
with the Biot—Savart law to calculate the induced magneticatom nuclei in molecular and periodic systems containing
field we find that the matrix elements of the diamagneticseveral hundred atoms, e.g., calculationd?8ke shieldings
term are proportional to i/ whilst those of the paramagnetic in zeolites.

TABLE VII. Tellurium shieldings: Effect of relativistic GIPAW operators.

ZORA GIPAW operators Nonrelativistic GIPAW operatoPs
Molecule 8bare 6dia 5para 5total 5bare (sdia 5para 5lolal
TeH, 36.32 7.04 —=1777.77 3833.90 36.32 7.32 —1988.02 3623.92

Te(CHa), 26.00 7.00 —2548.20 3053.10 26.00 7.27 —2849.26 2752.32
Te(CHs) 4 14.98 7.09 —2327.39 3262.98 14.98 7.36 —2567.05 3023.60

TeFks 2.71 7.39 —3161.61 2416.80 2.71 7.63 —3485.15 2093.48
(TeCR), 3.09 6.95 —4688.30 890.06 3.09 7.23 —5256.09 322.55
(TeCR), 3.70 6.98 —4621.40 957.59 3.70 7.26 —5180.78 398.49

@Using relativistic pseudopotentials and the relativistic GIPAW current operators of this work.
PUsing relativistic pseudopotentials and the nonrelativistic GIPAW current operators of Ref. 10.
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APPENDIX: ZORA PSEUDO-HAMILTONIAN <¢R"| (-7 () |¢R,m>

The all-electron ZORA Hamiltonian can be written, in X(Pr,mle”". (A4)

its scalar-relativistic form, as Using the identity

K(r) e~ (i20)r-RXB
HZORA:V(r)+1TT17. (Al)

p+ %A(r)) G(r)( p+ %A(r))e(”zc)"RXB

=(p+%A(r—R))G(r) p+%A(r—R)), (A5)

Using Eq. (18) the corresponding GIPAW pseudo-

operator Is whereG(r) is a local function, we obtain

— K(r) ~ H. =V"(r)+ 111'-11'4— > epra)
HZORA:V(r)+7T_2 w+ RE e’[Prn) ZORA 2 Romm RN
,n,m

Ko x|{ ¢ (w@w +v<r>) "
X <¢R,n 6_0( wTarJrV(r))ee ¢R,m> Rn|| TR 5 7R RmM
Y ~ (o . loc ~
(e g aver) | ) (il e V5 0) )
X (Prmle”’, (A2) X (Prmle”’, (A6)
where mz=p+ (1/c)A(r —R).
where 6= (i/2c)r-RXB. We expancH in powers ofB,
This can be written as He ﬁ(o)+ﬁ(1)+0(82) )

1 and finally obtain
Hzora= V'%(r) + STt (V(r)—=V"(r))

— 1
H(O):§p2+v|0C(r)+2 anl (A8)
R
(K(r)=1) .
T W+R nm e’|Pr.n) where the nonlocal part of the pseudopotentiél, is given
., by
X <¢> e"( n&r)ﬁV(r))e” ¢ >
e 2 o VR=2 [Brn)anm(Prml- (A9)
nm
—\ dril€ T 7w+ V(r) e’ drm The coefficientsa, ,, are given by
- _ K(r)
*(Brale™ T Ll cr vy [P
where V'°%(r) is a purely local function chosen such that —(Bril (P2+ V1)) g m)- (A10)

V(r)—V'"(r) is localized within the augmentation region,

Qg . As K only differs from 1 near to the nucleus, the opera- The contribution tcH linear inB is

tor — 1 ~ ~
HW=_—| L+ 2 RXVR B+ 2 [Bon)bfin(Boml,
2c R nm ' ’ ’
(K(r)—1) (A11)
e T
2 where
L . . . . nl 1 nl

also acts only withid)g . Using this localization and the fact VR=i—[r ,Vrl, (A12)
that the projectors and the pseudopartial waves form a com-
plete set, we write EQA3) as and

Downloaded 20 Mar 2003 to 131.111.8.101. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 118, No. 13, 1 April 2003 Relativistic NMR chemical shifts 5753

L 1 - ~ 13]. Levy-Leblond, Commun. Math. Phy8, 286 (1967).
biin =25 BL(bonlKL| Bom) —(bonllIdom]. (AL3) 3. Lewy-Leblond, Ann. PhysLeipzig) 57, 481(1970.
15C. G. van de Walle and P. E. Bthl, Phys. Rev. B47, 4244(1993.
are eigenstates df andL, with the same norm within the (1998,

. . . 17C. Pickard and M. Payne, Inst. Phys. Conf. &3 179 (1997.
augmentation region. The matrix eIeme(n#s),n|L|¢o,m) ar€ 183 p perdew, K. Burke, and M. Ernzerhof, Phys. Rev. L&f. 3865

weighted outside of the nuclear region, into the region where (;99¢
K=1.As aresulb, ,, may be neglected artld® is identical ~ *w. E. Lamb, Phys. Re\60, 817 (1941).
to the nonrelativistic fornt? ?N. C. Pyper, Chem. Phys. Le2, 204 (1983.
21G. Bachelet and M Schier, Phys. Rev. 25, 2103(1982.

22 R ;
1J. Cheeseman, G. W. Trucks, T. Keith, and M. Frisch, J. Chem. Rbyis. .\ 1roullier and J. Martins, Phys. Rev. 43, 1993(1991.

5497 (1996. 2See EPAPS Document No. E-JCPSA6-118-318309 for molecular geom-
2G. Aucar, T. Saue, L. Visscher, and H. A. Jensen, J. Chem. Rh9s6208 etries. A direct link to this document may be found in the online article’s
(1999. HTML reference section. The document may also be reached via the
3E. van Lenthe, Ph.D. thesis, Vrije Universiteit Amsterdam, 1996. EPAPS homepage(http://www.aip.org/pubservs/epaps.htmbr from
4S. Wolff, T. Ziegler, E. van Lenthe, and E. J. Baerends, J. Chem. Phys. ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more
5110. 7689(1999. information.

R. Boute_n, E. J. Baerends, E. van Lenthe, L. Visscher, G. Schreckenbackyg Schreckenbach, Y. Ruiz-Morales, and T. Ziegler, J. Chem. Fly.

and T. Ziegler, J. Phys. Chem. ¥4, 5600(2000. 8605 (1996.

6J. Vackar, M. Hytha, and A. Simunek, Phys. Rev58& 12712(1998.

25 s .
M. Kaupp, V. G. Malkin, O. L. Malkina, and D. Salahub, J. Am. Chem. Y. Ruiz-Morales, G. Schreckenbach, and T. Ziegler, J. Phys. Cher@1A

Soc.117, 1851(1999. 5 1121(1997.
8M. Kaupp, V. Malkin, O. Malkina, and D. Salahub, Chem. Phys. 1286, C. Jameson and A. Jameson, Chem. Phys. 188, 254 (1987.
382(1995. 2’M. Hada, J. Wan, R. Fukuda, and H. Nakatsuji, J. Comput. Ctaan.
ST. Gregor, F. Mauri, and R. Car, J. Chem. Phi&l, 1815(1999. 1502 (2001.
10¢C. Pickard and F. Mauri, Phys. Rev.@3, 245101(2001). 28F. Mauri, B. G. Pfrommer, and S. G. Louie, Phys. Rev. L& 5300
11p, E. Blachl, Phys. Rev. B50, 17953(1994. (1996.

'2E. van Lenthe, E. J. Baerends, and J. G. Snijders, J. Chem.¥hys597 29 Sebastiani and M. Parrinello, J. Phys. Chent.08, 1951 (2001).
(1993.

Downloaded 20 Mar 2003 to 131.111.8.101. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



