
Electronic Structure, Properties, and
Phase Stability of Inorganic Crystals:
A Pseudopotential Plane-Wave Study

V. MILMAN,1 B. WINKLER,2 J. A. WHITE,1 C. J. PICKARD,3 M. C. PAYNE,3

E. V. AKHMATSKAYA,4 R. H. NOBES4

1MSI, The Quorum, Barnwell Road, Cambridge CB5 8RE, United Kingdom
2Institut für Geowissenschaften, Mineralogie/Kristallographie, Olshausenstr 40, D 24098 Kiel,
Germany
3TCM Group, Cavendish Laboratory, Cambridge University, Cambridge CB3 0HE, United Kingdom
4Fujitsu European Centre for Information Technology, 2 Longwalk Road, Stockley Park,
Uxbridge UB11 1AB, United Kingdom

Received 10 March 1999; accepted 1 September 1999

ABSTRACT: Recent developments in density functional theory (DFT) methods
applicable to studies of large periodic systems are outlined. During the past three decades,
DFT has become an essential part of computational materials science, addressing problems
in materials design and processing. The theory allows us to interpret experimental data
and to generate property data (such as binding energies of molecules on surfaces) for
known materials, and also serves as an aid in the search for and design of novel materials
and processes. A number of algorithmic implementations are currently being used,
including ultrasoft pseudopotentials, efficient iterative schemes for solving the
one-electron DFT equations, and computationally efficient codes for massively parallel
computers. The first part of this article provides an overview of plane-wave
pseudopotential DFT methods. Their capabilities are subsequently illustrated by examples
including the prediction of crystal structures, the study of the compressibility of minerals,
and applications to pressure-induced phase transitions. Future theoretical and
computational developments are expected to lead to improved accuracy and to treatment
of larger systems with a higher computational efficiency. c© 2000 John Wiley & Sons, Inc.
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Introduction

D uring the past three decades, computational
materials science has emerged as a new dis-

cipline in science and technology. It has deep-
ened our fundamental understanding of materials
and processes, has helped to interpret experimen-
tal data from diverse experimental techniques, and
has opened exciting possibilities for the design of
novel materials and processes by allowing quantita-
tive property predictions.

While the enormous progress in computer tech-
nology was a necessary prerequisite for this de-
velopment, it is probably safe to say that without
density functional theory (DFT), the impact of com-
putational materials science would have been sub-
stantially less significant. The aim of this article is
to survey one particular DFT implementation that
has been shown to be a highly productive tool for
studies of complex solid-state systems, in particular
inorganic crystals. The plane-wave pseudopotential
(PW-PP) technique has become widely recognized
as the method of choice for computational solid-
state studies. The emphasis on the total energy
and related properties makes PW-PP a technique
that is ideally suited to structural studies based on
a quantum-mechanical treatment of the electronic
subsystem. This article discusses the major features
of this approach and presents applications of PW-
PP to such problems as the prediction of crystal
structures, the study of the compressibility of miner-
als, and the investigation of pressure-induced phase
transitions.

Methodology

DENSITY FUNCTIONAL THEORY
AND CONVENTIONAL
PSEUDOPOTENTIAL/PLANE-WAVE
TECHNIQUES

It seems appropriate to start with a brief his-
torical review of the approach. The formulation of
DFT as a rigorous many-body approach by Hohen-
berg and Kohn [1] and Kohn and Sham [2] in the
mid-1960s and the introduction of the local density
approximation (LDA) represent major milestones.
Subsequently, DFT evolved rapidly as the dominant
approach in practical electronic structure calcula-
tions of solids and surfaces. In fact, there is no good
alternative to DFT for accurate electronic structure

calculations of metallic systems. The generaliza-
tion of DFT to spin-polarized (magnetic) systems
in the early 1970s [3, 4] paved the way for many
impressive successes of this theory in the domain
of magnetic materials. However, in the realm of
molecular systems it took about two decades before
DFT became generally accepted as a viable alter-
native to wave-function-based ab initio methods
(such as Hartree–Fock and configuration interaction
methods). Applications of the LDA to molecules
and to molecule–solid interactions revealed a severe
overestimation of binding energies, thus motivating
improvements in the form of generalized gradient
corrections (GGA) [5, 6].

A major challenge was to create a robust practi-
cal scheme for solving the DFT equations. PW-PP
schemes have been used to study electronic struc-
ture of solids since the late 1950s (see [7] for a
review). The main idea of the method is to sim-
plify the DFT problem by considering only valence
electrons. Core electrons are excluded under the as-
sumption that their charge density is not affected by
changes in the chemical environment. This approx-
imation is well understood and gives a number of
computational advantages:

The pseudopotential is much weaker in the
core region than the true Coulomb potential of
the nucleus, and it does not have a singularity
at the position of the nucleus.
The resulting pseudo-wave functions are
smooth and nodeless in the core region.
Both pseudopotentials and pseudo-wave
functions can be efficiently represented using
a plane-wave basis set.
Relativistic effects, which are mainly due
to core electrons, can be included in the
pseudopotential.
Last but not least, there are fewer electronic
states in the solid-state calculation.

The pseudopotential transferability is ensured by
the norm-conservation condition, which guarantees
that the pseudopotential is constructed in such a
way that the charge contained in the core region of
the pseudoatom is the same as that of the real atom.

The accurate representation of wave functions
is an important part of the method. As a conse-
quence of the Bloch theorem, the solution of the
Kohn–Sham equations for a periodic system can
be expanded in plane waves, which amounts to
a three-dimensional Fourier series representation.
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The convergence of this expansion is controlled by
a single parameter, namely the highest frequency
at which the series is terminated (conventionally
defined as the highest kinetic energy of a plane
wave). The control of the basis set convergence by
a single parameter is a very appealing feature, par-
ticularly when compared with the tedious task of
basis set improvements with Gaussians or other lo-
calized functions. Another major advantage is the
ease of computing forces and stresses, which makes
the PW-PP technique an efficient tool for struc-
tural studies. The plane waves are intimately linked
to the pseudopotentials, since only pseudo-wave
functions can be represented using a small num-
ber of Fourier components; an accurate expansion
of all-electron wave functions would require an in-
ordinate number of plane waves.

The original PW-PP schemes that were in use up
to the early 1980s were based on diagonalization of
the Hamiltonian matrix, and limitations of memory
and computational speed restricted the maximum
size of matrix that could be treated to the order
of 1000. Whereas a minimum of 100 plane waves
per atom is needed to represent the electronic or-
bitals in a total energy calculation of this kind,
10 atoms required at least 1000 plane waves, and
thus represented the largest tractable system. These
restrictions have certainly eased with the power of
modern computing, but the primary reason that the
total energy pseudopotential method has become
so powerful is that the numerical methods used to
solve the equations that determine the electronic
state have changed completely.

ITERATIVE MINIMIZATION SCHEMES

The first changes in the way DFT equations are
solved were suggested in 1985 by Car and Par-
rinello [8]. Their “molecular dynamics method”
introduced three major ideas for speeding up cal-
culations:

The use of an iterative diagonalization instead
of direct diagonalization of the Hamiltonian
matrix.
Overlapping the iterations toward self-
consistency in the electronic potential with
the iterations to determine the electronic wave
functions.
The use of fast Fourier transforms to reduce
the computational cost and memory require-
ment for operating with the Hamiltonian on
the electronic wave functions.

Combined, these ideas are central to the efficiency of
modern total energy pseudopotential calculations.
They provide a methodology in which computa-
tional cost scales linearly with the number of plane-
wave basis states, removing the previous restriction
on the number of atoms that could be treated. The
new method allowed calculations to be performed
on systems containing many tens of atoms. It also
enabled the first ever dynamic simulations of ionic
systems in which forces on atoms were correctly de-
scribed via inclusion of the quantum mechanics of
the electronic states.

The next step was to improve even further on
the computational algorithm. It appeared that the
particular iterative diagonalization technique intro-
duced by Car and Parrinello [8] was not necessarily
the most efficient, especially for metals and narrow-
gap semiconductors. The conjugate gradient tech-
nique of relaxing the electronic configuration to its
ground state is a more robust and efficient way to
solve the DFT equations [7]. Simultaneous conju-
gate gradient update of all wave functions offers
further advantages [9], albeit at a cost of increased
memory requirements.

Considerable effort has gone into improving the
pseudopotentials used. One drawback of pseudo-
potentials is that the ionic potential is angular-
momentum dependent or “nonlocal,” and it is com-
putationally expensive to determine the angular
momentum components of each electronic wave
function around every atom. Techniques have been
developed to optimize pseudopotentials [10, 11] to
reduce the size of the plane-wave basis set. The
Kleinman–Bylander scheme [12] uses a separable
form of the potential to reduce the number of non-
local projections that have to be performed. By
performing these projections in real space and ex-
ploiting the finite range of the nonlocality around
every atom, the computational cost associated with
the use of nonlocal pseudopotentials has been fur-
ther reduced [13].

Geometry optimization of complex structures
with many degrees of freedom, including internal
coordinates and cell parameters, is the main appli-
cation area of the PW-PP technique. The BFGS ap-
proach [14] provides an efficient scheme for geom-
etry optimization, either at ambient conditions or
under applied external stress. An iterative update
of the inverse Hessian, based on the quantum-
mechanically calculated stress tensor and atomic
forces, represents the most robust scheme within
this framework. All these algorithmical develop-
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ments have been available within the CASTEP com-
puter code since the early 1990s [15].

It became obvious from even early applications
of the method [7] that pseudopotential calculations
worked extremely well for most atoms, including
transition metals and first-row elements. The mole-
cular dynamics method opened up completely new
application areas. The robustness and accuracy of
the PW-PP scheme enabled the study of such prob-
lems as the 7×7 reconstruction of the Si(111) surface
[16, 17], the dynamics of dissociative chemisorp-
tion at semiconductor surfaces [18], the dissociative
adsorption of small molecules on surfaces of met-
als and insulators [19 – 23], and the electronic and
elastic properties of dislocations and characteristics
of dislocation-point defect interaction [24 – 26]. The
rapid increase in computing power made it possi-
ble to study such complex systems and processes
as AFM (atomic force microscopy) imaging of re-
active surfaces [27], scanning tunneling microscopy
and scanning tunneling spectroscopy (STS) study
of reconstructed surfaces of semiconductors [28],
and mechanical polishing of diamond surfaces [29].
The area of structural studies of nonideal crystals
currently includes such challenging applications as
complex details of grain boundary structure [30],
interaction of grain boundaries with impurities
[31 – 34], and ultimately grain boundary sliding in
materials with different types of interatomic bond-
ing [35, 36].

The PW-PP studies of nonperiodic systems have
been for some time confined to investigations of
molecule–surface interactions, in particular, mole-
cular adsorption on surfaces [18 – 23, 37 – 40] and
chemical reactions in zeolites [41, 42]. It has, how-
ever, been shown that the plane-wave method can
reproduce the accuracy of large Gaussian basis cal-
culations for nonperiodic systems with a compet-
itive computational time [43, 44]. Furthermore, a
recent study of molecular polarizabilities of pro-
totypical liquid crystal-forming molecules showed
that the polarizability is generally overestimated by
the localized basis methods and that the results do
not necessarily converge with increasing localized
basis set sophistication [45]. Further applications
showed that the PW-PP approach can provide use-
ful quantitative information on, e.g., conformational
maps of medium-sized molecules [46, 47], activity
of enzymes such as cytochrome P450 [48], and vi-
brational properties of molecules [49] and molecular
crystals [50].

The PW-PP approach can be made more effi-
cient for studies of molecular systems if one recog-

nizes that the regions of low electron density in
the computational supercell can be treated using
fewer basis functions than the high-density ones.
This can be technically achieved in the adaptive
coordinate method suggested by Gygi [51]. This
technique introduces a new set of basis functions
that depend on a coordinate transformation and
can adapt themselves to represent the solutions of
the Kohn–Sham equation optimally. The adaptive
coordinate method has been subsequently modi-
fied into an efficient tool for solid-state studies [52].
A further development of this approach led to the
creation of a real-space adaptive coordinate method,
which does not require a basis set, but uses the
multigrid scheme within the finite-difference ap-
proach to solve the DFT equations numerically
[53, 54].

The modeling of complex systems such as those
described above usually involves the quantum-
mechanical description of about 100 atoms, with
the biggest cells containing around 500 atoms
[17, 24]. Such calculations until recently required
massively parallel supercomputers for which an
efficient parallel implementation of the PW-PP
methodology has been developed in the computer
code CETEP, based on real and reciprocal space
decomposition [55]. A similar and independent par-
allel version, FINGER, also provides an option of
k-point parallelism [56]. However, a further algo-
rithmic breakthrough was needed (i) to bring cal-
culations for tens and hundreds of atoms to work-
stations and (ii) to extend the system size available
to supercomputing applications, especially with re-
spect to the length of molecular dynamics runs.

ULTRASOFT PSEUDOPOTENTIALS

Two major achievements have become avail-
able recently that greatly enhance the efficiency
of the PW-PP technique: (i) routine use of ultra-
soft pseudopotentials and (ii) the use of the den-
sity mixing scheme for solving the DFT equations
in conjunction with the conjugate-gradient algo-
rithm for wave functions. These developments, first
made available as part of the VASP code [57], have
recently been incorporated into the CASTEP pro-
gram [15].

The idea of ultrasoft pseudopotentials as put for-
ward by Vanderbilt [58] is that the relaxation of the
norm-conserving condition can be used to generate
much softer potentials, i.e., the basis set size can
be made substantially smaller. In this scheme the
pseudo-wave functions can be made softer within
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the core region, so that the cutoff energy can be
reduced dramatically. The pseudopotential transfer-
ability is maintained by introducing a generalized
orthonormality condition. Then the electron density,
given by the squared moduli of the wave functions,
has to be augmented in the core region to recover
the full electronic charge. The electron density is
thus subdivided into a smooth part that extends
throughout the unit cell and a hard part localized
in the core regions. The augmented part appears in
the density only, not in the wave functions. This dif-
fers from methods like linearized augmented plane
wave technique (LAPW), where a similar approach
is applied to wave functions.

The augmentation charges are normally
“pseudized” to make calculations feasible. It has
been rigorously proven [59] that without such
pseudization, i.e., in the limit of very accurate aug-
mentation charges, the ultrasoft pseudopotential
method should—and in fact does—reproduce the
results of the all-electron projector augmented wave
method [60].

Ultrasoft potentials have another advantage in
addition to being much softer than the norm-
conserving potentials. The generation algorithm
for ultrasoft potentials produces Kleinman–Bylan-
der [12] separable potentials for more than one pro-
jector function in each angular momentum channel,
which guarantees good scattering properties over a
prespecified energy range. This results in much bet-
ter transferability and accuracy of pseudopotentials.
Ultrasoft potentials usually treat “shallow” core
electrons as valence states by including multiple
sets of occupied states in each angular momentum
channel. This also adds to high accuracy and trans-
ferability of the potentials, although at a price of
computational efficiency. Nonlinear core corrections
can be used to describe shallow core states in a more
approximate way if computational cost becomes an
issue [61].

The ultrasoft pseudopotential formulation is
more complex than the formalism for norm-
conserving pseudopotentials. In particular, one has
to solve a generalized eigenvalue problem as a
result of using nonorthogonal wave functions. It
follows that in the cases where the effect of reduc-
ing the basis set size is not large, the overall gain
of the ultrasoft pseudopotential approach can be
insignificant. The elements that can be described
with sufficiently soft norm-conserving potentials
(e.g., Al, Si) do not necessarily warrant ultrasoft
pseudopotential treatment. On the other hand, ul-
trasoft potentials provide great improvements in

both accuracy and computational cost for elements
with the valence 1s, 2p, 3d, or 4f electrons where
the norm-conserving potentials are necessarily quite
hard.

DENSITY MIXING SCHEME

The density mixing scheme as described by
Kresse and Furthmüller [57] presents the latest de-
velopment of the robust stable algorithm for cal-
culating the Kohn–Sham ground state within the
PW-PP formalism. The main advantage of the den-
sity mixing scheme over the standard conjugate-
gradient-based minimization [7] is that metallic sys-
tems can be reliably converged in a relatively small
number of steps. The conjugate-gradient method
can be extended to treat metallic systems efficiently
if an all-bands approach is adopted, i.e., if all elec-
tronic bands are updated simultaneously. The den-
sity mixing method, however, can be incorporated
easily into a band by band approach [7], which is
more memory efficient. The direct inversion in the
iterative subspace (DIIS) scheme proposed by Pu-
lay [62] is used to mix input and output charge den-
sities. Further additions specific to the PW scheme,
such as the use of preconditioning and an optimized
metric for evaluating the scalar products, make the
scheme reliable and at the same time highly effi-
cient [57]. The combination of ultrasoft potentials
and the density mixing scheme leads to speedup
factors of 5–10 for semiconducting and insulating
systems and to factors of 15–30 for metallic sys-
tems when compared with the conjugate-gradient
scheme with norm-conserving pseudopotentials.

The accuracy of ultrasoft potentials is illustrated
by Table I. We performed geometry optimization for
a number of relatively simple structures, some of
them having a symmetry as low as monoclinic, and
found that in practically all cases the calculated cell
parameters agree to within 2% with the experimen-
tal values. In fact, in most cases the agreement was
better than 1%, including compounds of transition
metals and rare-earth elements. In other words, it is
difficult to separate an error introduced by the use of
pseudopotentials from the inherent error due to the
use of DFT to describe exchange–correlation effects.
The same degree of agreement with experiment was
observed for a few molecular systems included in
Table I.

To summarize, the state-of-the-art PW-PP tech-
niques [15, 53] make accurate DFT calculations for
periodic cells with tens and even hundreds of atoms
routinely available on a workstation.
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TABLE I
Calculated structural properties of various inorganic compounds and small molecules (cell parameters or
molecular bond lengths in Å, cell angles, fractional coordinates of atoms). Space group numbers for crystalline
systems are given according to [63].

Compound Structural parameters

(space group Temperature Error
Element number) Experiment and reference CASTEP (%)

Ag Ag (225) a = 4.0857 RT [64] a = 4.112 0.6
Ag2O (224) a = 4.73 RT [64] a = 4.788 1.2

Al Al (225) a = 4.0496 RT [64] a = 3.965 −2.0
Al2O3 (167) a = 4.759 RT [65] a = 4.703 −1.2

c = 12.991 c = 12.871 −0.9
Am AmO (225) a = 4.960 RT [66] a = 5.084 +2.5
Ar Ar (225) a = 5.256 4 K [67] a = 5.256 0.0
As As (166) a = 3.760 4 K [68] a = 3.705 −1.5

c = 10.441 c = 10.083 −3.4
ζ = 0.22764 ζ = 0.2313 1.6

GaAs (216) a = 5.653 RT [64] a = 5.663 0.2
Au Au (225) a = 4.0783 RT [64] a = 4.1528 1.8

SrAu2Si2 (139) a = 4.37 RT [69] a = 4.437 1.5
c = 10.14 c = 10.074 −0.7

B BN (216) a = 3.615 RT [64] a = 3.598 −0.5
BCl3 (173) a = 6.08 108 K [70] a = 6.216 2.2

c = 6.55 c = 6.632 1.2
Ba Ba (229) a = 5.019 RT [71] a = 4.992 −0.7

BaO (225) a = 5.523 RT [64] a = 5.562 0.7
Be Be (194) a = 2.2856 RT [64] a = 2.279 −0.3

c = 3.5832 c = 3.579 −0.1
BeO (186) a = 2.6979 RT [72] a = 2.738 1.5

c = 4.3772 c = 4.446 1.6
BeS (216) a = 4.855 RT [64] a = 4.871 0.3

Bi BiOF (129) a = 3.7469 RT [70] a = 3.633 −3.0
c = 6.226 c = 6.267 0.7

LaBi (225) a = 6.57 RT [64] a = 6.648 1.2
Bi2O3 (224) a = 5.45 RT [73] a = 5.360 −1.7

Br Br2 a = 2.2811 RT [64] a = 2.288 0.3
LiBr (225) a = 5.489 RT [74] a = 5.467 −0.4

C Diamond (227) a = 3.556 4 K [64] a = 3.539 −0.5
CO d(C—O) = 1.1283 RT [64] 1.144 1.7

Ca Ca (225) a = 5.5884 RT [64] a = 5.506 −1.5
CaO (225) a = 4.797 10 K [75] a = 4.817 0.4

Cd Cd (194) a = 2.9793 RT [64] a = 3.035 1.9
c = 5.6196 c = 5.665 0.9

CdSe (216) a = 6.05 RT [64] a = 6.146 1.6
Ce CeS (225) a = 5.777 RT [76] a = 5.772 −0.1

CeO2 (225) a = 5.412 RT [77] a = 5.455 0.8
Cl Cl2 d(Cl—Cl) = 1.9878 RT [64] 1.990 0.0

CsCl (221) a = 4.112 RT [64] a = 4.167 1.3
Co ε-Co (194) a = 2.507 RT [64] a = 2.481 −1.0

c = 4.069 c = 4.018 −1.2
α-Co (225) a = 3.544 700 K [64] a = 3.494 −1.4
CoSi2 (225) a = 5.365 RT [78] a = 5.300 −1.2

Cr Cr (229) a = 2.8846 RT [64] a = 2.851 −1.2
Cr3Si (223) a = 4.556 RT [79] a = 4.525 −0.7

(Continued)
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TABLE I
(Continued)

Compound Structural parameters

(space group Temperature Error
Element number) Experiment and reference CASTEP (%)

Cs Cs (229) a = 6.141 RT [64] a = 6.14 0.0
CsH(225) a = 6.388 RT [80] a = 6.387 0.0

Cu Cu (225) a = 3.6147 RT [64] a = 3.631 0.5
Cu2O (224) a = 4.267 100 K [81] a = 4.253 −0.3

Eu EuS (225) a = 5.957 RT [64] a = 5.957 0.0
F F2 d(F—F) = 1.4119 RT [64] 1.418 −0.1

CaF2 (225) a = 5.447 77 K [82] a = 5.496 0.9
Fe Fe (229) a = 2.8664 RT [64] a = 2.883 0.6

FeSi2(123) a = 2.684 RT [70] a = 2.649 −1.3
c = 5.128 c = 5.037 −1.7

Ga GaN (216) a = 4.50 RT [64] a = 4.535 0.8
GaP (216) a = 5.4505 RT [64] a = 5.496 0.8

Ge Ge (227) a = 5.6575 RT [64] a = 5.572 −1.5
H H2 d(H—H) = 0.7414 RT [64] 0.7422 0.1

He α-He (194) a = 3.555 4K [64] a = 3.556 0.0
c = 5.798 c = 5.798 0.0

Hf Hf (194) a = 3.1946 RT [64] a = 3.082 −3.5
c = 5.0511 c = 4.961 −1.8

Hg HgTe (216) a = 6.4623 RT [64] a = 6.585 2.9
HgS (216) a = 5.8517 RT [64] a = 5.978 2.6
HgSe (216) a = 6.084 RT [64] a = 6.211 2.7

I I2 d(I—I) = 2.6663 RT [64] 2.657 −0.3
LiI (225) a = 6.00 RT [73] a = 6.000 0.0

In InAs (216) a = 6.0584 RT [64] a = 6.181 2.0
InP (216) a = 5.8688 RT [64] a = 5.949 1.4

Ir Ir (225) a = 3.8389 RT [64] a = 3.857 0.5
IrAl3 (194) a = 4.246 RT [70] a = 4.200 −1.1

c = 7.756 c = 7.618 −1.8
K K (229) a = 5.321 RT [64] a = 5.311 0.3

KF (225) a = 5.33 RT [64] a = 5.354 0.5
Kr KrF2 d(Kr—F) = 1.89 RT [64] 1.916 1.4
La La (194) a = 3.774 RT [64] a = 3.824 1.3

c = 12.171 c = 12.539 3.0
LaTiO3 (62) a = 5.630 10 K [83] a = 5.602 −0.5

b = 5.584 b = 5.712 2.2
c = 7.901 c = 7.899 0.0

Li Li (229) a = 3.5092 RT [64] a = 3.450 −1.7
LiF (225) a = 4.018 RT [64] a = 4.038 0.5

Lu Lu (194) a = 3.5052 RT [64] a = 3.499 −0.2
c = 5.5494 c = 5.490 −1.0

LuC2 (87) a = 3.563 RT [84] a = 3.611 1.4
c = 5.964 c = 6.079 1.9

Mg Mg (194) a = 3.2094 RT [64] a = 3.209 0.0
c = 5.2105 c = 5.210 0.0

MgO (225) a = 4.2112 RT [64] a = 4.277 1.6
Mn MnB4 (12) a = 5.5029 RT [85] a = 5.427 −1.4

b = 5.3669 b = 5.278 −1.4
c = 2.9487 c = 2.914 −1.2
β = 122.71◦ β = 122.37◦ −0.3

(Continued)
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TABLE I
(Continued)

Compound Structural parameters

(space group Temperature Error
Element number) Experiment and reference CASTEP (%)

Mo Mo (229) a = 3.147 RT [64] a = 3.1588 0.4
MoSi2 (139) a = 3.20 RT [86] a = 3.195 −0.1

c = 7.85 c = 7.791 −0.8
N N2 d(N—N) = 1.0977 RT [64] 1.147 4.5

ZrN (225) a = 4.62 RT [64] a = 4.634 0.3
Na Na (229) a = 4.2906 RT [64] a = 4.312 0.5

Nal (225) a = 6.462 RT [64] a = 6.537 1.2
Nb Nb (229) a = 3.3004 RT [64] a = 3.3153 0.4

NbO (221) a = 4.210 RT [87] a = 4.2344 0.6
Ne Ne (225) a = 4.429 4K [67] a = 4.380 −1.1
Ni Ni (225) a = 3.524 RT [64] a = 3.500 −0.7

NiAs (186) a = 3.602 RT [70] a = 3.549 −1.5
c = 5.009 c = 5.031 0.4

Np NpAs (221) a = 3.31 RT [88] a = 3.415 3.2
O O2 d(O—O) = 1.217 RT [64] 1.230 1.1
Os Os (194) a = 2.7344 RT [89] a = 2.746 0.4

c = 4.3173 c = 4.334 0.4
OsP2 (58) a = 5.1012 RT [90] a = 5.050 −1.0

b = 5.9022 b = 5.889 −0.2
c = 2.9183 c = 2.937 0.6

P P2 d(P—P) = 1.8931 RT [64] 1.875 −0.9
Pb Pb (225) a = 4.9502 RT [64] a = 5.046 1.9

PbSe (225) a = 6.128 RT [64] a = 6.151 0.4
Pd Pd (225) a = 3.8903 RT [64] a = 3.903 0.3

PdSi (62) a = 5.610 RT [91] a = 5.612 0.0
b = 3.385 b = 3.354 −0.9
c = 6.145 c = 6.153 0.1

Po α-Po (221) a = 3.345 RT [70] a = 3.308 −1.1
YPo (225) a = 6.251 RT [92] a = 6.288 0.6

Pt Pt (225) a = 3.9236 RT [64] a = 3.971 1.2
PtS (131) a = 3.48 RT [70] a = 3.515 1.0

c = 6.11 c = 6.120 0.2
Pu PuO (225) a = 4.958 RT [64] a = 5.006 1.0

PuS (525) a = 5.536 RT [76] a = 5.525 −0.2
Ra Ra (229) a = 5.148 RT [64] a = 5.288 2.7
Rb Rb (229) a = 5.705 RT [64] a = 5.700 −0.1

RbBr (225) a = 6.877 RT [93] a = 6.979 1.5
Re Re (194) a = 2.761 RT [64] a = 2.758 0.0

c = 4.458 c = 4.446 −0.3
Re3B (63) a = 2.89 RT [70] a = 2.889 0.0

b = 9.313 b = 9.405 1.0
c = 7.258 c = 7.235 −0.3

Rh Rh (225) a = 3.8032 RT [64] a = 3.853 1.3
RhTe2 (205) a = 6.448 RT [94] a = 6.480 0.5

Ru Ru (194) a = 2.7058 RT [64] a = 2.720 0.5
c = 4.2816 c = 4.289 0.2

RuAs2 (58) a = 5.4279 RT [90] a = 5.340 −0.6
b = 6.1834 b = 6.130 0.0
c = 2.9685 c = 2.985 0.9

(Continued)
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TABLE I
(Continued)

Compound Structural parameters

(space group Temperature Error
Element number) Experiment and reference CASTEP (%)

S S2 d(S—S) = 1.8892 RT [64] 1.889 0.0
Sb GaSb (216) a = 6.0954 RT [64] a = 6.132 0.6

AlSb (216) a = 6.1355 RT [64] a = 6.078 −0.9
Sc Sc (194) a = 3.3088 RT [64] a = 3.309 0.0

c = 5.2680 c = 5.178 −1.7
Sc3In (194) a = 6.421 RT [95] a = 6.418 0.0

c = 5.183 c = 5.183 0.0
Se ZnSe (216) a = 5.6676 RT [64] a = 5.711 0.8

BeSe (216) a = 5.139 RT [64] a = 5.194 1.1
Si Si (227) a = 5.4307 RT [64] a = 5.440 0.2

α-SiO2 (152) a = 4.902 13 K [96] a = 4.987 1.7
c = 5.400 c = 5.459 1.1

Sm SmSe (196) a = 6.159 RT [97] a = 6.234 1.2
Sn Sn (227) a = 6.481 140 K [98] a = 6.408 −1.1

SnO2 (136) a = 4.736 RT [99] a = 4.709 −0.6
c = 3.185 c = 3.150 −1.1

Sr Sr (225) a = 6.0849 RT [64] a = 6.085 0.0
SrO (225) a = 5.13 RT [64] a = 5.17 0.9

Ta Ta (229) a = 3.303 RT [64] a = 3.252 −1.5
TaO (225) a = 4.422 RT [100] a = 4.490 1.5

Tc Tc (194) a = 2.738 RT [64] a = 2.751 0.5
c = 4.393 c = 4.392 0.0

TcOF4 (176) a = 9.00 RT [101] a = 9.220 2.4
c = 7.92 c = 8.050 1.6

Te Te (152) a = 4.456 RT [64] a = 4.437 −0.4
c = 5.926 c = 5.900 −0.4

ZnTe (216) a = 6.101 RT [64] a = 6.142 0.7
Th ThN (225) a = 5.167 RT [102] a = 5.172 0.1

ThO2 (225) a = 5.598 RT [103] a = 5.578 −0.4
Ti Ti (194) a = 2.9506 RT [64] a = 2.936 −0.5

c = 4.6835 c = 4.658 −0.5
Rutile TiO2 (136) a = 4.587 15 K [104] a = 4.625 0.8

c = 2.954 c = 2.965 0.4
Tl Tl (194) a = 3.4566 RT [64] a = 3.595 4.0

c = 5.5248 c = 5.544 0.3
TlCl (221) a = 3.835 RT [64] a = 3.875 1.0

Tm TmOI (129) a = 3.887 RT [105] a = 3.917 0.8
c = 9.166 c = 9.175 0.1

CsTmCl3 (221) a = 5.455 RT [106] a = 5.457 0.0
U UN2 (225) a = 5.31 RT [64] a = 5.254 −1.1

UC2 (139) a = 3.517 RT [107] a = 3.524 0.2
c = 5.987 c = 5.946 −0.7

V V (229) a = 3.024 RT [64] a = 3.019 −0.2
VN (225) a = 4.137 RT [108] a = 4.137 0.0

W W (229) a = 3.165 RT [64] a = 3.222 1.8
WC (187) a = 2.906 RT [70] a = 2.949 1.5

c = 2.837 c = 2.873 1.3
Xe XeF2 d(Xe—F) = 1.977 RT [64] 2.030 2.7

(Continued)
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TABLE I
(Continued)

Compound Structural parameters

(space group Temperature Error
Element number) Experiment and reference CASTEP (%)

Y Y (194) a = 3.6482 RT [64] a = 3.638 −0.3
c = 5.7318 c = 5.672 −1.0

YF3 (62) a = 6.354 RT [109] a = 6.362 0.1
b = 6.854 b = 6.903 0.7
c = 4.395 c = 4.471 1.7

Zn Zn (194) a = 2.665 RT [64] a = 2.641 −0.9
c = 4.947 c = 4.865 −1.7

ZnS (216) a = 5.4193 RT [64] a = 5.484 1.2
Zr Zr (194) a = 3.2316 RT [64] a = 3.241 0.3

c = 5.1475 c = 5.206 0.6

Compressibility and Pressure-Induced
Phase Transitions

One of the most important physical properties of
inorganic crystals is their behavior under compres-
sion. Both the value of the bulk modulus and the
phase stability of various polymorphs is of critical
importance to, e.g., geophysics and mineral physics
because experimental information on high-pressure
behavior of minerals is rarely available.

BULK MODULUS AND EQUATION OF STATE

In quantum-mechanical total energy calculations,
the bulk modulus and its pressure derivative are
obtained by fitting an analytical equation of state
(EOS) to either E(V) or P(V) curves. Such calcula-
tions for low-symmetry systems require the ability
to optimize geometry at a fixed value of applied
external pressure. The deviation of DFT-calculated
bulk moduli from experimental values can be as
large as 20% [110, 111]. Furthermore, the difference
between LDA and GGA results can be quite sub-
stantial, partly due to the difference in the equilib-
rium unit-cell volume, which is generally underesti-
mated in LDA calculations. High-quality theoretical
determination of the EOS and of the bulk modulus
requires sufficiently transferable pseudopotentials
and well converged calculations with respect to the
k-point sampling and the basis set size. With this
proviso an agreement with experiment within a few
percent can be achieved for a variety of materials:
minerals (CaO [112], CaSiO3 [113], MgSiO3 [114],

Mg2SiO4 [115], three polymorphs of silica [116]),
metallic systems (Cu [117], Co and CoSi2 [118],
ε-FeSi [119], AlCo compounds [120]), and semicon-
ductors (layered compounds GeS, GeSe, AsI3 [121],
nitride semiconductors [122], GaAs [123]).

Recent results on the compressibility of alumi-
nosilicate garnets [124] provide a good illustration
of the level of accuracy achievable with the PW-
PP approach. These garnets crystallize in a body-
centered cubic structure with 160 atoms per unit cell
(although it is sufficient to use a primitive cell con-
taining 80 atoms for the calculations). The structure
can be described as consisting of chains in which
corner-sharing SiO4 tetrahedra and AlO6 tetrahe-
dra alternate. A third coordination polyhedron is
a triangular dodecahedron occupied by metallic
cations (e.g., Mg, Ca, Fe, or Mn). The compres-
sion mechanism for these materials is unclear from
experimental data alone [125], and ab initio model-
ing is necessary to gain insight into the role of the
cation in the structural changes under pressure. The
compressibility of garnets depends only slightly on
the identity of the metallic cation, and thus the re-
quired accuracy in the calculated bulk modulus is
very high. Table II illustrates the level of agreement
achieved using CASTEP: cell parameters are accu-
rate to within 0.5%, and bulk moduli agree with
experiment to 1–2%, so that the effect of the metallic
cation on compressibility can be described quantita-
tively.

A detailed study of the polyhedra changes under
pressure shows that the main compression mech-
anism in these compounds is the bending of the
Si–O–Al angle between the octahedra and the tetra-
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TABLE II
Calculated [124] and measured [125] lattice parameters, a, and bulk moduli, B, for aluminosilicate garnets.
Percentage deviation of theoretical results from experiment is given in brackets.

a (Å) B (GPa)

Pyrope Theory 11.395 (0.3) 170 ± 2 (0.6)
Mg3Al2Si3O12 Exp. 11.428 171 ± 2

Grossular Theory 11.857 (0.1) 166 ± 2 (1.2)
Ca3Al2Si3O12 Exp. 11.848 168.4 ± 0.7

Almandine Theory 11.509 (0.02) 176.5 ± 3.5 (0.9)
Fe3Al2Si3O12 Exp. 11.507 175 ± 7

Spessartine Theory 11.616 (0.1) 183.4 ± 3.9 (2.5)
Mn3Al2Si3O12 Exp. 11.606 178.8 ± 0.8

hedra [124]. It can also be deduced that the increase
of cation size in the sequence Mg–Fe–Mn does not
change the qualitative characteristics of the com-
pression process, and thus the increase of the bulk
modulus in the pyrope–almandine–spessartine se-
quence is the “normal” trend in garnets. Cations as
large as Ca cause excessive swelling of the struc-
ture which can be seen mainly as expansion and
distortion of AlO6 octahedra. This has the effect
of lowering the bulk modulus of the structure and
modifies the qualitative features of the compression
process.

TEMPERATURE-INDUCED PHASE TRANSITIONS

DFT in the standard formulation is a zero-tem-
perature method, and thus it is not straightforward
to use this technique to study pressure–temperature
or concentration–temperature phase diagrams. It is,
however, possible to implement the Mermin func-
tional [126], which is a generalization of the Kohn–
Sham functional to finite temperatures. Alterna-
tively, one can simply disregard electronic thermal
effects at moderate temperatures.

The phase stability at finite temperatures can be
studied directly using the variable cell shape molec-
ular dynamics [127, 128]. This computationally very
demanding technique has the advantage of being
able to predict the stable structure at a given pres-
sure and temperature based only on the number of
fbrmula units per unit cell. It is not possible, how-
ever, to study metastable polymorphs using this
approach.

Another viable computational option to bridge
the gap between zero and finite temperature stud-
ies is to use a phonon description of solids. In-
vestigations of this nature are quite rare because

phonon calculations are computationally expensive.
The most straightforward technique to calculate
phonon spectra uses finite atomic displacements to
calculate forces on atoms and thus to obtain the
force constant matrix. If the range of the force con-
stants is assumed to be short, as it typically is
in parametrized force-model calculations, the en-
tire dispersion relation can be evaluated from data
taken from small ab initio calculations [129, 130].
The next step might be to calculate the vibrational
entropy and thus the free energy in the quasihar-
monic approximation. This approach was used to
calculate, for example, the phase boundary for the
orthorhombic–tetragonal transition in magnesium
silicate perovskite [131]. The comparison of the cal-
culated diagram with possible mantle geotherms
showed that the tetragonal phase may be present in
the lower mantle.

A more general and accurate method of phonon
calculations is based on the linear response formal-
ism [132, 133]. This technique uses the variational
property of DFT to calculate the response of the
system to small atomic displacements. The main
advantage compared with the finite displacement
method is that all calculations are performed with
the primitive unit cell and no supercell calculations
are required. This method has been successfully ap-
plied to several systems. The most notable success
of this approach is the development of a model
Hamiltonian using the lattice Wannier function for-
malism. This technique was used to study finite
temperature ferroelectric phase transitions in sys-
tems such as the perovskite oxides PbTiO3 [134] and
PbZrO3 [135] and the narrow-gap semiconductor
Pb3GeTe4 [136].

Quantitative studies that predict transition tem-
peratures based on lattice dynamics are still quite
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rare. It is more common to extract qualitative in-
formation about structural instabilities and possible
products of phase transformations from soft-mode
analysis. For example, an ab initio study of phonon
instabilities and coupling between modes in mag-
nesium silicate perovskite revealed strongly unsta-
ble modes in cubic and tetragonal phases, which
“freeze in” to ultimately form the orthorhombic
phase [137]. Similarly, a pronounced soft mode was
found at the X point in the cubic ZrO2 structure, in
agreement with the experimentally observed cubic
to tetragonal phase transition [131].

PRESSURE-INDUCED PHASE TRANSITIONS

The quantum-mechanical approach has now be-
come a routine way to study pressure-induced tran-
sitions. Both displacive and reconstructive types
of phase transitions can be investigated by ab ini-
tio modeling techniques. Reconstructive transitions
are best studied by constructing energy–volume
curves for all possibly relevant space groups. The
lowest energy structure at a given pressure then
corresponds to the most stable modification at that
pressure. Transition pressures and related volume
changes can be obtained from the “common tan-
gent” construction.

Reconstructive pressure-induced transitions
have been studied in systems with various types
of interatomic bonding. Recent examples include
studies of the stability of the zincblende and
cinnabar forms of ZnS [138], the transition from the
low-pressure sodium chloride to the high-pressure
cesium chloride structure in CaO [139], the isostruc-
tural semiconductor–semimetal phase transition in
TiS2 [140], the relative stability study of six phases
in TiO2 [141], and structural energetics of various
alternative polymorphs of NbN [142]. A review of
theoretical studies of exotic forms of tetrahedrally
coordinated semiconductors is given in [143].
These unusual phases are synthesized as long-lived
metastable forms of the elemental semiconductors
silicon and germanium, and can also be produced
in III–V semiconductors.

There have been a few attempts to study atom-
istic mechanisms of reconstructive phase transi-
tions. Recent examples include the transformation
path from graphite to diamond [144] and the calcu-
lation of fcc to bcc transitions in simple metals [145].

An example of the investigation of the origin
and the driving force for displacive-type pressure-
induced structural phase transition is the study of
CsI under pressure [146]. The high-pressure phase

FIGURE 1. Pressure dependence of the density of
electronic states (DOS) in CsI [146]: dashed line, 0 GPa;
dash-dotted line, 25 GPa; solid line, 60 GPa. The 60 GPa
data set corresponds to the high-pressure polymorph.
Semicore states (Cs 5s, I 5s, Cs 5p) and valence band
(VB) states (Cs 6s and I 5p) are shown.

of this compound has been the subject of some
controversy, and ab initio calculations were used
to demonstrate unambiguously that the structure
of the high-pressure phase had a glide plane. It
was shown by calculations that all structural pa-
rameters change discontinuously at the transition
pressure, so the transition was of first order. Hexag-
onal distortions of the cubic phase that appear at
the transition pressure have an electronic origin, as
follows from an analysis of the electronic structure
changes under pressure. It can be seen from Figure 1
that notionally inert core states of Cs (5s and 5p) and
of I (5s) change their character under pressure—they
broaden and eventually the Cs 5p peak overlaps
with the I 5s states. This causes an overall change
of the bonding character from largely ionic to cova-
lent due to the hybridization between Cs 5p and I 5s
states. The spatial distribution of Cs 5p states ceases
to be spherical and these states take part in bonding
in the high-pressure phase.

Another example of an added insight into the ef-
fect of pressure on electronic properties has been
given in a study of the high-pressure phase of
CsGeCl3, where the calculations showed a change
of the stereochemical activity of a lone electron pair
under pressure from “active” to “inert,” in agree-
ment with the valence-shell electron-pair repulsion
model [147].
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PREDICTION OF NEW STRUCTURES AND
THEIR PROPERTIES

Ab initio techniques can be successfully ap-
plied to study hypothetical or unknown structures.
A simple example would be a study of a system that
contains hydrogen atoms whose position cannot
be unambiguously located using diffraction tech-
niques. This is the case in, e.g., CsHSO3, where
experimental results were published without hy-
drogen positions. CASTEP calculations were subse-
quently used to find these positions and to predict
structural and optical properties of this molecu-
lar compound under pressure [148]. This situation,
where theoretical methods have an advantage over
experiment, is typical for complex structures that
contain hydrogen as well as heavy atoms.

Another type of poorly characterized structure
is metastable polymorphs that often exist as high-
pressure phases. For example, polymorphs of crys-
talline and amorphous carbon have long been the
subject of experimental and theoretical studies that
continue to discover new forms of carbon pack-
ing: nanotubes [149], carbon “onions” [150], etc.
One structure that attracted some interest is super-
cubane, which was suggested to be a very dense
polymorph. The structure of supercubane is not
known accurately because the only source of ex-
perimental data comes from an electron diffraction
study on a thin film. CASTEP calculations indicate
that it is unlikely that supercubane has been ob-
served yet [151]. Calculated structural properties at
ambient conditions and under compression show
that supercubane has a chemically sensible high-
symmetry structure, but it is not a high-density
polymorph at all.

Another carbon polymorph was predicted re-
cently by combining a graph theoretical approach
with density functional calculations [152]. The quo-
tient graphs approach [153] was used to generate
a number of trial structures that would topologi-
cally correspond to a framework structure of sp2-
carbon. These structures were further optimized
using CASTEP, and their stability and electronic
properties were studied. It was shown that there ex-
ists a nanoporous conducting framework structure
of sp2-hybridized carbon atoms that is relatively sta-
ble compared with other carbon polymorphs.

The graph theory approach [153], as well as the
tiling of minimal surfaces scheme [154], can be use-
ful tools for generating trial structures in the ab
initio quest for new inorganic structures. There is a
computationally more expensive alternative based

on the Monte Carlo algorithm for packing of rigid
fragments that was shown to be a successful way of
determining crystal polymorphs of molecular crys-
tals [155]. At present this approach has only been
used with empirical interatomic force fields, in view
of both computational effort required and insuf-
ficient validation work done in the area of DFT
applications to molecular crystals. Recent successes
of the DFT description of weakly bonded molecular
crystals [148, 156 – 158] might induce an interest in a
completely ab initio approach to polymorph predic-
tion that would utilize a quantum-mechanical de-
scription of crystal bonding and would not use any
a priori information about crystal symmetry. One
should keep in mind, however, that the implemen-
tation of the Monte Carlo scheme [155] described
above is presently not applicable to the polymorph
prediction of framework structures.

Summary

We hope that this brief review has convinced the
reader that the times have changed since a state-
ment like, “It is impossible to calculate from first
principles the details of crystal structures,” [159]
was generally accepted. The impact of quantum-
mechanical modeling on such varied fields as ma-
terials science, inorganic crystallography, and mole-
cular biology grows steadily, and it is safe to predict
that its influence will continue to increase.

Despite the many successes, there remain a num-
ber of challenges. These include:

Calculations for large systems containing
thousands of atoms
Higher computational speed to enable ab ini-
tio molecular dynamics simulations on large
systems
Higher accuracy in the prediction of total-
energy-related properties such as molecular
heats of formation, cohesive energies of solids,
and energy hypersurfaces of chemical reac-
tions including barrier heights
Higher accuracy in the prediction of weak in-
teractions (e.g., van der Waals energies)
More accurate description of electronic excita-
tions including energy band gaps in semicon-
ductors
More accurate calculation of a wider range of
measurable properties such as NMR chemical
shifts, infrared and Raman spectra, ultravio-
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let/visible spectra, and photoemission spec-
tra.

We are seeing steady progress addressing all of
the above points. For example, research in linear-
scaling (order-N) methods is progressing, but also
the “traditional” PW-PP methods described in this
article are constantly being improved. The treat-
ment of systems with thousands of atoms is already
possible and there is no fundamental obstacle to ex-
tending these methods even further. However, at
a certain point it becomes questionable whether a
full quantum-mechanical treatment of all atoms in
a large model is really necessary, especially in cases
such as reactions at specific catalytic sites. There is
usually a crossover point where further increase in
system size is not commensurate with the additional
insight gained from fully ab initio calculations, and
the development of hybrid schemes designed to ad-
dress this issue will become more important.

ACKNOWLEDGMENTS

We are grateful to many colleagues for numerous
stimulating discussions of the developments of den-
sity functional methods and of their applications to
realistic problems, especially to Volker Heine, Erich
Wimmer, and Mike Gillan. We would like to thank
David Vanderbilt for making available his set of ul-
trasoft pseudopotentials codes, and Ming-Hsien Lee
and Jyh-Shing Lin for their help with generation of
ultrasoft potentials.

References

1. Hohenberg, P.; Kohn, W. Phys Rev B 1964, 136, 864.
2. Kohn, W.; Sham, L. J. Phys Rev A 1965, 140, 1133.
3. von Barth, U.; Hedin, L. J Phys C 1972, 5, 1629.
4. Gunnarsson, O.; Lunqvist, B. I.; Lunqvist, S. Solid State

Commun 1972, 11, 149.
5. Perdew, J. P. Phys Rev B 1986, 33, 8822.
6. Becke, A. D. Phys Rev A 1988, 38, 3098.
7. Payne, M. C.; Teter, M. P.; Allen, D. C.; Arias, T. A.; Joan-

nopolous, J. D. Rev Mod Phys 1992, 64, 1045.
8. Car, R.; Parrinello, M. Phys Rev Lett 1985, 55, 2471.
9. Gillan, M. J. J Phys 1989, 1, 689.

10. Rappe, A. K.; Rabe, K.; Kaxiras, E.; Joannopolous, J. D.
Phys Rev B 1990, 41, 1227.

11. Lin, J. S.; Qteish, A.; Payne, M. C.; Heine, V. Phys Rev B
1993, 47, 4174.

12. Kleinman, L.; Bylander, D.M. Phys Rev Lett 1982, 48, 1425.
13. King-Smith, R. D.; Payne, M. C.; Lin, J. S. Phys Rev B 1991,

44, 13063.

14. Fischer, T. H.; Almlöf, J. J Phys Chem 1992, 96, 9768.

15. CASTEP Program. Molecular Simulations, Inc., San Diego,
CA.

16. Stich, I.; Payne, M. C.; King-Smith, R. D.; Lin, J. S.;
Clarke, L. J. Phys Rev Lett 1992, 68, 1351.

17. Stich, I.; Terakura, K.; Larson, B. E. Phys Rev Lett 1995, 74,
4491.

18. de Vita, A.; Stich, I.; Gillan, M. J.; Payne, M. C.; Clarke, L. J.
Phys Rev Lett 1993, 71, 1276.

19. White, J. A.; Bird, D. M.; Stich, I.; Payne, M. C. Phys Rev
Lett 1994, 73, 1404.

20. Gundersen, K.; Jacobsen, K. W.; Norskov, J. K.; Hammer, B.
Surf Sci 1994, 304, 131.

21. White, J. A.; Bird, D. M.; Payne, M. C. Phys Rev B 1996, 53,
1667.

22. Gravil, P. A.; Bird, D. M. Surf Sci 1997, 377, 555.

23. Lindan, P. J. D.; Harrison, N. M.; Holender, J. M.;
Gillan, M. J. Chem Phys Lett 1996, 261, 246.

24. Liu, F.; Mostoller, M.; Milman, V.; Chisholm, M. F.; Ka-
plan, T. Phys Rev B 1995, 51, 17192.

25. Kaplan, T.; Mostoller, M.; Chisholm, M. F. Phys Rev B 1998,
58, 12865.

26. Valladares, A.; White, J. A.; Sutton, A. P. Phys Rev Lett
1998, 81, 4903.

27. Perez, R.; Payne, M. C.; Stich, I.; Terakura, K. Phys Rev Lett
1997, 78, 678.

28. Bass, J. M.; Matthai, C. C. Phys Rev B 1997, 55, 13032.

29. Jarvis, M. R.; Perez, R.; van Bouwelen, F. M.; Payne, M. C.
Phys Rev Lett 1998, 80, 3428.

30. Dawson, I.; Bristowe, P. D.; Lee, M. H.; Payne, M. C.; Se-
gall, M. D.; White, J. A. Phys Rev B 1996, 54, 13723.

31. Maiti, A.; Chisholm, M. F.; Pennycook, S. J.; Pantelides, S.
T. Phys Rev Lett 1996, 77, 1306.

32. Thomson, D. I.; Heine, V.; Finnis, M. W.; Marzari, N. Philos
Mag Lett 1997, 76, 281.

33. Chisholm, M. F.; Maiti, A.; Pennycook, S. J.; Pantelides, S.
T. Phys Rev Lett 1998, 81, 132.

34. Yan, Y.; Chisholm, M. F.; Duscher, G.; Maiti, A.; Penny-
cook, S. J.; Pantelides, S. T. Phys Rev Lett 1998, 81, 3675.

35. Molteni, C.; Francis, G. P.; Payne, M. C.; Heine, V. Phys Rev
Lett 1996, 76, 1284.

36. Molteni, C.; Marzari, N.; Payne, M. C.; Heine, V. Phys Rev
Lett 1997, 79, 869.

37. Pasteur, A. T.; Dixon-Warren, S. J.; Ge, Q.; King, D. A. J
Chem Phys 1997, 106, 8896.

38. Hu, P.; King, D. A.; Crampin, S.; Lee, M. H.; Payne, M. C.
J Chem Phys 1997, 107, 8103.

39. Szymanski, M. A.; Gillan, M. J. Surf Sci 1996, 367, 135.

40. Kantorovich, L. N.; Gillan, M. J. Surf Sci 1997, 376, 169.

41. Sandre, E.; Payne, M. C.; Gale, J. D. Chem Comm 1998, 22,
2445.

42. Stich, I.; Gale, J. D.; Terakura, K.; Payne, M. C. Chem Phys
Lett 1998, 283, 402.

43. Andrews, S. B.; Burton, N. A.; Hiller, I. H.; Holender, J. M.;
Gillan, M. J. Chem Phys Lett 1996, 261, 521.

44. Milman, V.; Lee, M. H. J Phys Chem 1996, 100, 6093.

908 VOL. 77, NO. 5



PSEUDOPOTENTIAL STUDY OF INORGANIC CRYSTALS

45. Clark, S. J.; Ackland, G. J.; Crain, J. Europhys Lett 1998, 44,
578.

46. Clark, S. J.; Adam, C. J.; Cleaver, D. J.; Crain, J. Liquid Crys-
tals 1997, 22, 477.

47. Segall, M. D.; Payne, M. C.; Boyes, R. N. Mol Phys 1998, 93,
365.

48. Segall, M. D.; Payne, M. C.; Ellis, S. W.; Tucker, G. T.; Boyes,
R. N. Phys Rev E 1998, 57, 4618.

49. Clark, S. J.; Adam, C. J.; Hsueh, H. C.; Pu, F. N.; Crain, J.
Mol Cryst Liquid Cryst 1997, 302, 433.

50. Wu, C. Q.; Fu, R. T.; Li, Z. Q.; Kawazoe, Y. J Phys 1997, 9,
L351.

51. Gygi, F. Phys Rev B 1993, 48, 11692.

52. Hamann, D. R. Phys Rev B 1995, 51, 7337.

53. Gygi, F.; Galli, G. Phys Rev B 1995, 52, 2229.

54. Modine, N. A.; Zumbach, G.; Kaxiras, E. Phys Rev B 1997,
55, 10, 289.

55. Clarke, L. J.; Stich, I.; Payne, M. C. Comp Phys Commun
1992, 72, 14.

56. Pöykkö, S.; Puska, M. J.; Nieminen, R. M. Phys Rev B 1998,
57, 12, 174.

57. Kresse, G.; Furthmüller, J. Phys Rev B 1996, 54, 11, 169.

58. Vanderbilt, D. Phys Rev B 1990, 41, 7892.

59. Kresse, G.; Joubert, D. Phys Rev B 1999, 59, 1758.

60. Blöchl, P. E. Phys Rev B 1994, 50, 17, 593.

61. Louie, S. G.; Froyen, S.; Cohen, M. L. Phys Rev B 1982, 26,
1738.

62. Pulay, P. Chem Phys Lett 1980, 73, 393.

63. Hahn, T., Ed. International Tables for Crystallography;
Kluwer Academic: Dordrecht, 1989.

64. Lide, D. R., Ed. CRC Handbook of Chemistry and Physics,
73rd ed.; CRC Press: Boca Raton, FL, 1993.

65. Sawada, H. Mater Res Bull 1994, 29, 127.

66. Zachariasen, W. H. Acta Crystallogr 1949, 2, 388.

67. Henshaw, D. G. Phys Rev 1958, 111, 1470.

68. Schifer, D.; Barrett, C. S. J Appl Crystallogr 1969, 2, 30.

69. Doerrscheidt, W.; Niess, N.; Schaefer, H. Z Naturforsch B
1976, 31, 890.

70. Hyde, B. G.; Andersson, S. Inorganic Crystal Structures;
Wiley: New York, 1989.

71. Evers, J.; Oehlinger, G.; Sendlinger, B.; Weiss, A.; Schmidt,
M.; Schramel, P. J Alloys Compounds 1992, 182, 175.

72. Downs, J. W.; Ross, F. K.; Gibbs, G. V. Acta Crystallogr
Sect B 1985, 41, 425.

73. Zav’yalova, A. A.; Imamov, R. M. Zh Strukt Khim 1972, 13,
869.

74. Ott, H. Phys Z 1923, 24, 209.

75. Huang, Q.; Chmaissem, O.; Caponi, J. J.; Chaillout, C.;
Marezio, M.; Tholence, J. L.; Santoro, A. Physica C 1994,
227, 1.

76. Zachariasen, W. H. Acta Crystallogr 1949, 2, 291.

77. Wolcyrz, M.; Kepinski, L. J Solid State Chem 1992, 99, 409.

78. Bertaut, F.; Blum, P. C R Hebd Seances Acad Sci 1950, 231,
626.

79. Jauch, W.; Schultz, A. J.; Heger, G. J Appl Crystallogr 1987,
20, 117.

80. Ghandehari, K.; Luo, H.; Ruoff, A. L.; Trail, S. S.; Di-
Salvo, F. J. Phys Rev Lett 1995, 74, 2264.

81. Restori, R.; Schawrzenbach, D. Acta Crystallogr Sect B
1986, 42, 201.

82. Batchelder, D. N.; Simmons, R. O. J Chem Phys 1964, 41,
2324.

83. Eitel, M.; Greedan, J. E. J Less-Common Met 1986, 116, 95.

84. Atoji, M. J Chem Phys 1961, 35, 1950.

85. Andersson, S. Acta Chem Scand 1969, 23, 687.

86. Tabata, H.; Hirano, T. J Jpn Inst Met 1988, 52, 1154.

87. Kubaschewski, O.; Hopkins, B. E. J Less-Common Met
1960, 2, 172.

88. Dabos, S.; Dufour, C.; Benedict, U.; Spirlet, J. C.; Pages, M.
Physica 1986, 144, 79.

89. Finkel, V. A.; Palatnik, M. I.; Kovtun, G. P. Phys Met Metall
1971, 32, 231.

90. Kjekshus, A.; Rakke, T.; Andresen, A. F. Acta Chem Scand
A 1977, 31, 253.

91. Goeransson, K.; Engstroem, I.; Nolaeng, B. J Alloys Comp
1995, 219, 107.

92. Prokin, E. S.; Ershova, Z. W.; Chebotarev, N. T.; Ermola-
jev, E. E. Izv Akad Nauk SSSR, Neorg Mater 1975, 11, 1230.

93. Ahtee, M. Ann Acad Sci Fenn Ser A6 Phys 1969, 313, 1.

94. Kjekshus, A.; Rakke, T.; Andresen, A. F. Acta Chem Scand
A 1978, 32, 209.

95. Compton, V. B.; Matthias, B. T. Acta Crystallogr 1962, 15,
94.

96. Lager, G. A.; Jorgensen, J. D.; Rotella, F. J. J Appl Phys 1982,
53, 6751.

97. Guittard, M.; Benacerraf, A. C R Hebd Seances Acad Sci
1959, 248, 2589.

98. Lee, J. A.; Raynor, G. V. Nature 1954, 174, 1011.

99. Seki, H.; Ishizawa, N.; Mizutani, N.; Kato, M. J Ceram Soc
Jpn 1984, 92, 219.

100. Steeb, S.; Renner, J. Metall 1967, 21, 93.

101. Edwards, A. J.; Jones, G. R.; Sills, R. J. C. J Chem Soc A 1970,
2521.

102. Gerward, L.; Olsen, J. S.; Benedict, U.; Itie, J.-P.; Spirlet, J.
C. J Appl Crystallogr 1985, 18, 339.

103. Whitfield, H. J.; Roman, D.; Palmer, A. R. J Inorg Nucl
Chem 1966, 28, 2817.

104. Burdett, J. K.; Hughbanks, T.; Miller, G. J.; Richardson, J.
W.; Smith, J. V. J Am Chem Soc 1987, 109, 3639.

105. Kruse, F. H.; Asprey, L. B.; Morosin, B. Acta Crystallogr
1962, 14, 541.

106. Meyer, G. Naturwissenschaften 1978, 65, 258.

107. Rundle, R. E.; Baenziger, N. C.; Wilson, A. S.; McDon-
ald, R. A. J Am Chem Soc 1948, 70, 99.

108. Kubel, F.; Flack, H. D.; Yvon, K. Phys Rev B 1987, 36, 1415.

109. Cheetham, A. K.; Norman, N. Acta Chem Scand A 1974,
28, 55.

110. Recio, J. M.; Blanco, M. A.; Luana, V.; Pandey, R.; Ger-
ward, L.; Olsen, J. S. Phys Rev B 1998, 58, 8949.

111. D’Arco, P.; Fava, F. F.; Dovesi, R.; Saunders, V. R. J Phys
1996, 8, 8815.

112. Karki, B. B.; Crain, J. J Geophys Res 1998, 103, 12, 405.

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 909



MILMAN ET AL.

113. Karki, B. B.; Crain, J. Geophys Res Lett 1998, 25, 2741.
114. Karki, B. B.; Stixrude, L.; Clark, S. J.; Warren, M. C.; Ack-

land, G. J.; Crain, J. Am Mineral 1997, 82, 635.
115. Brodholt, J.; Patel, A.; Refson, K. Am Mineral 1996, 81, 257.
116. Karki, B. B.; Warren, M. C.; Stixrude, L.; Ackland, G. J.;

Crain, J. Phys Rev B 1997, 55, 3465.
117. Qteish, A. Phys Rev B 1995, 52, 14, 497.
118. Milman, V.; Lee, M. H.; Payne, M. C. Phys Rev B 1994, 49,

16, 300.
119. Qteish, A.; Shawagfeh, N. Solid State Commun 1998, 108,

11.
120. Ogut, S.; Rabe, K. M. Phys Rev B 1994, 50, 2075.
121. Hsueh, H. C.; Crain, J. Phys Status Solidi B 1999, 211, 365.
122. Pugh, S. K.; Dugdale, D. J.; Brand, S.; Abram, R. A. Semi-

cond Sci Technol 1999, 14, 23.
123. Kelsey, A. A.; Ackland, G. J.; Clark, S. J. Phys Rev B 1998,

57, 2029.
124. Akhmatskaya, E. V.; Nobes, R. H.; Milman, V.; Winkler, B.

Z Kristallogr 1999, 214, 808.
125. Geiger, C. A. An Investigation of the Microscopic Struc-

tural and the Macroscopic Physicochemical Properties of
Aluminosilicate Garnets and Their Relationships. Habili-
tationschrift, Kiel University, 1996.

126. Mermin, D. Phys Rev A 1965, 137, 1441.
127. Wentzcovich, R. M.; Martins, J. L.; Allen, P. B. Phys Rev B

1992, 45, 11, 372.
128. Souza, I.; Martins, J. L. Phys Rev B 1997, 55, 8733.
129. Ackland, G. J.; Warren, M. C.; Clark, S. J. J Phys: Condens

Matter 1997, 9, 7861.
130. Warren, M. C.; Ackland, G. J. Phys Chem Miner 1996, 23,

107.
131. Parlinski, K.; Li, Z. Q.; Kawazoe, Y. Phys Rev Lett 1997, 78,

4063.
132. Baroni, S.; Giannozzi, P.; Testa, A. Phys Rev Lett 1987, 58,

1861.
133. Gonze, X.; Allan, D. C.; Teter, M. P. Phys Rev Lett 1992, 68,

3603.
134. Rabe, K. M.; Waghmare, U. V. J Phys Chem Solids 1996, 57,

1397.

135. Waghmare, U. V.; Rabe, K. M. Ferroelectric 1997, 194, 135.

136. Cockayne, E.; Rabe, K. M. Phys Rev B 1997, 56, 7947.

137. Warren, M. C.; Ackland, G. J.; Karki, B. B.; Clark, S. J. Min-
eral Mag 1998, 62, 585.

138. Qteish, A.; AbuJafar, M.; Nazzal, A. J Phys 1998, 10, 5069.

139. Karki, B. B.; Crain, J. J Geophys Res 1998, 103, 12, 405.

140. Allan, D. R.; Kelsey, A. A.; Clark, S. J.; Angel, R. J.; Ack-
land, G. J. Phys Rev B 1998, 57, 5106.

141. Milman, V. In Properties of Complex Inorganic Solids;
Plenum: New York, 1997; p. 19.

142. Ogut, S.; Rabe, K. M. Phys Rev B 1995, 51, 10, 443.

143. Grain, J.; Ackland, G. J.; Clark, S. J. Rep Progr Phys 1995,
58, 705.

144. Scandolo, S.; Bernasconi, M.; Chiarotti, G.; Focher, P.;
Tosatti, E. Phys Rev Lett 1995, 74, 4015.

145. Sliwko, V. L.; Mohn, P.; Schwarz, K. H.; Blaha, P. J Phys
1996, 8, 799.

146. Winkler, B.; Milman, V. J Phys 1997, 9, 9811.

147. Winkler, B.; Milman, V.; Lee, M. H. J Chem Phys 1998, 108,
5506.

148. Griewatsch, C.; Winkler, B.; Milman, V.; Pickard, C. J. Phys
Rev B 1998, 57, 4321.

149. Charlier, J. C.; de Vita, A.; Blase, X.; Car, R. Science 1997,
275, 646.

150. de Heer, W. A.; Ugarte, D. Chem Phys Lett 1993, 207, 480.

151. Winkler, B.; Milman, V. Chem Phys Lett 1998, 293, 284.

152. Winkler, B.; Pickard, C. I.; Milman, V.; Klee, W. E.; Thimm,
G. Chem Phys Lett 1999, 312, 536.

153. Bader, M.; Klee, W. E.; Thimm, G. Z Kristallogr 1997, 212,
553.

154. Mackay, A. L.; Terrones, H. Nature 1991, 352, 762.

155. Verwer, P.; Leusen, F. J. J. In Reviews in Computational
Chemistry; Wiley: New York, 1998; Vol. 12, p. 325.

156. Chall, M.; Winkler, B.; Milman, V. J Phys 1996, 8, 9049.

157. Meijer, E. J.; Sprik, M. J Chem Phys 1996, 105, 8684.

158. Ikeda, T.; Sprik, M.; Terakura, K.; Parrinello, M. Phys Rev
Lett 1998, 81, 4416.

159. Baur, W. H. Phys Chem Mineral 1977, 2, 3.

910 VOL. 77, NO. 5


	Introduction
	Methodology
	TABLE I
	TABLE I
	TABLE I
	TABLE I
	TABLE I

	Compressibility and Pressure-Induced Phase Transitions
	TABLE II
	FIGURE 1.

	Summary
	References

