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The Breakdown of the Static Lattice Model

• The free electron model was refined
by introducing a crystalline external
potential

• This allows much progress, but is not
the full story

• Ions are not infinitely massive, nor
held in place by infinitely strong forces

• The classical static lattice can only be
valid for T=0K

• It is even wrong for T=0K:
∆x∆p ≥ h̄⇒ Zero point motion

• This is a particular problem for
insulators: unless kBT > Eg there
are no degrees of freedom to account
for their many properties



Equilibrium Properties
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• Specific heat of a metal:

– the electronic degrees of freedom
alone cannot explain experiment

• Density and cohesive energy

– zero point motion is important for
solid neon and argon, and dominant
for solid helium (a quantum solid)

• Thermal expansion of insulators

– electronic contribution negligible
for kbT < Eg



Transport Properties

• Conductivity
– in a perfect metallic crystal there
are no collisions and perfect
conduction

– lattice vibrations provide the
scattering mechanisms

• Superconductivity
– interaction between two electrons
via lattice vibrations

– no vibrations, no superconductors

• Thermal conductivity of insulators

– the electronic degrees of freedom
are not sufficient

• Transmission of sound

– sound waves are carried by
vibrations of the lattice



Interaction with Radiation

• Reflectivity of ionic crystals

– Sharp maximum in infrared, far
below h̄ω = Eg

– E-field applies opposite forces on ±
ions

• Inelastic scattering of light

– small frequency shifts (Brillouin or
Raman scattering)

– understood via lattice vibrations

• X-ray scattering

– thermal vibrations and zero point
motion diminish the intensity of the
peaks

– there is a background in directions
not satisfying the Bragg condition

• Neutron scattering

– momentum transfer with the lattice
is discrete, and provides a probe of
the lattice vibrations



A Classical Theory of the Harmonic Crystal

• A general treatment of the deviation
of ions from their equilibrium positions
is intractable, so proceed in stages:

1. Treat small deviations classically
2. Proceed to a quantum theory
3. Examine implications of larger
movements

• To treat the small deviations, we
assume each ion stays in the vicinity
of its equilibrium position R, and the

Bravais lattice remains as an average
of the instantaneous configurations

• Denote the position of an atom whose
mean position is R by r(R):
r(R) = R + u(R)

• The dynamics of the lattice is
governed by the classical Hamiltonian:
∑

R

P(R)2

2M + U



The Harmonic Approximation

U

r

• 3D Taylor expand the potential energy
around the equilibrium configuration:
f(r + a) = f(r) + a · ∇f(r)+
1
2(a · ∇)2f(r) +O(a3)

• At equilibrium the net force is zero,
and the potential energy is given by:
U = U eq + Uharm

• The general form for Uharm is:

Uharm = 1
2

∑

RR′,µν uµ(R)Dµν(R−R′)uν(R
′)



The Adiabatic Approximation

• The quantities D in the harmonic
expansion are in general very difficult
to calculate

• In ionic crystals the difficulties are the
long ranged coulomb interactions

• In covalent/metallic crystals the
difficulty comes from the fact that the
contribution to the total energy of the
valence electrons depends on the ionic

configuration ⇒ the wavefunctions
change as the ions move

• Make the adiabatic approximation by
separating the typical timescales of
the motion of the electrons and ions

– the electrons are in their
groundstate for any configuration

• D is still difficult to calculate



Normal Modes of a 1D Bravais Lattice

K K K K K K K K

M M M M M M M M M

Masses M and springs K

u([N+1]a) = u(a)  ; u(0) = u(Na)

Born-von Karman BCs

• Consider ions of massM separated by
distance a

• For simplicity, assume nearest
neighbour interactions only

• In the Harmonic approximation, this
is equivalent to masses connected by
springs of strength K:

Mü(na) = −∂Uharm

∂u(na) , U
harm =

1
2K

∑

n[u(na)− u((n+ 1)a)]2



Normal Modes of a 1D Bravais Lattice

−π/a

2Κ
Μ

kω(  )

π/a0
k

• Seek solutions of the form:
u(na, t) ∝ ei(kna−ωt)

• The PBCs ⇒ eikNa = 1 ⇒ k = 2π
a

n
N

with n integer, N solutions and
−π

a ≤ k < π
a

• Substitution into the dynamical eqn.
gives: ω(k) = 2

√

K
M |sin(ka/2)|

• The group and phase velocities differ
substantially at the zone boundaries



Normal Modes of a 1D Bravais Lattice with a Basis
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• The analysis can be repeated

• The are 2 solutions for each k ⇒ 2N
solutions in total:
ω2 = K+G

M ± 1
M

√
K2 +G2 + 2KGcos ka

• There are acoustic and optical modes

A

O



Normal Modes of a 3D Bravais Lattice
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• The dynamical matrix is D(k) =
∑

R D(R)e−ik·R, where D(R−R′)
is the second derivative of U with
respect to the displacement of ions at
R and R′ at eqbm..

• The solution of the dynamical
equation is given by the eigen-
equation Mω2e = D(k)e, where e

is the polarization vector

• 3N solutions for each ion in the basis



Normal Modes of a Real Crystal
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Dispersion curves for Silicon

• The dynamical matrix can be built up
from first principles calculations

• Can use a supercell approach to study
certain high symmetry k-vectors

• For arbitary k use linear response
theory – a perturbation theory



Connections with the theory of Elasticity

• The classical theory of elasticity
ignores the microscopic atomic
structure

• The continuum theory of elasticity can
be derived from the theory of lattice
vibrations

• Consider displacements that vary

slowly over the atomic length scale

• Using the symmetries of D:
Uharm = 1

4

∑

RR′

[u(R′)− u(R)]D(R−R′)[u(R′)− u(R)]

• Slowly varying displacements ⇒
u(R′) =
u(R) + (R′ −R) · ∇u(r)|r=R

Uharm = 1
2

∑

R,µνστ

(

∂uµ(R)
∂xσ

)(

∂uν(R)
∂xτ

)

Eσµτν Eσµτν = −1
2

∑

RRσDµν(R)Rτ



A Quantum Theory of the Harmonic Crystal

• In a Quantum theory the system can
be in a set of discrete stationary states

• These stationary states are the
eigenstates of the harmonic

Hamiltonian: Hharm =
∑

R

P (R)2

2M +
1
2

∑

RR′ u(R)D(R−R′)u(R′)

• The result is: an N -ion harmonic
crystal is equivalent to 3N

independent oscillators ⇒ the 3N
classical normal modes

• The energy in each mode is discrete,
and the total energy is:
E =

∑

ks(nks +
1
2)h̄ωs(k)

• The integer nks is the excitation
number of the normal mode in branch
s at wave vector k



Normal Modes or Phonons

• So far we have described the state in
terms of the excitation number nks

• This is clumsy if describing processes
involving the exchange of energy
– between normal modes, or other
systems (electrons, neutrons or X-
rays)

• As for the QM theory of the EM
field we use an equivalent corpuscular

description

• Instead of saying that the mode k,s is
in the nks excited state we say there
are nks phonons of type s with wave
vector k

• Photons ⇒ of the correct frequency
are visible light
Phonons ⇒ of the correct frequency
are sound

• Don’t forget phonons/normal modes
are equivalent



Classical Specific Heat: Dulong-Petit

• The thermal energy density is given
by averaging over all configurations
weighted by e−βE with β = 1

kBT

u = 1
V

∫

dΓe−βHH
∫

dΓe−βH

= − 1
V

∂
∂β ln

∫

dΓe−βH

• By making a change of variables:
∫

dΓe−βH = e−βUeq
β−3N × constant

• The thermal energy density is:
u = ueq + 3nkBT, (n = N/V )

• The specific heat is independent of T :
cv = 3nkB

• This is not observed experimentally
– only approximately at high
temperature where the harmonic
approximation is bad anyway



The Quantum Mechanical Lattice Specific Heat

• The QM thermal energy density is:
u = 1

V

∑

iEie
−βEi/

∑

i e
−βEi

= − 1
V

∂
∂β ln

∑

i e
−βEi

• The sum is over the stationary states
with energy:
Ei =

∑

ks(n
i
ks +

1
2)h̄ωs(k),

niks = 0, 1, 2, . . .
∑

i e
−βEi = Πks

e−βh̄ωs(k)/2

1−e−βh̄ωs(k)

• The energy density is :
u = 1

V

∑

ks h̄ωs(k)[ns(k) +
1
2]

• The mean excitation number ns(k) =
1

eβh̄ωs(k)−1
is the Bose-Einstein

distribution function

• The specific heat is given by:
cv = 1

V

∑

ks
∂
∂T

h̄ωsk

eβh̄ωs(k)−1



The High-Temperature Lattice Specific Heat

• When kBT À h̄ωs(k) all the normal
modes are highly excited

• Writing βh̄ωs(k) = x, then x is small
and we can expand:
1

ex−1 = 1
x[1− x

2 +
x2

12 +O(x3)]

• Keeping just the leading term we
regain the Dulong-Petit law:

cv = 1
V

∑

ks
∂
∂T kBT = 3N

V kB

• The next term is constant in T

• We might try to correct the Dulong-
Petit law, but anharmonic terms
are likely to dominate where the
expansion holds – or the crystal melts!
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The Low-Temperature Lattice Specific Heat

• In the limit of a large crystal integrate
over the 1st Brillouin zone:
cv = ∂

∂T

∑

i

∫

dk
(2π)3

h̄ωs(k)

eβh̄ωs(k)−1

• Modes with h̄ωs(k) À kBT will not
contribute – but the acoustic branches
will at long enough wavelengths for
any T

• Make some approximations:

1. Ignore the optical modes
2. Use the dispersion relationship:
ωs(k) = cs(k̂)k
3. Integrate over all k

• Making the substitution βh̄cs(k̂)k =
x we obtain, and c as the average
speed of sound:

cv = ∂
∂T const× (kBT )4

(h̄c)3
∝ T 3



Intermediate Temperature: The Debye and Einstein

Models

• The T 3 relation only remains valid
while the thermal energy is small
compared to the energy of phonons
with a non-linear dispersion (much
lower than room temperature)

• The Debye and Einstein models
approximate the dispersion relations

• Debye: all branches modelled by 3

acoustic modes, all with ω = ck, and
integrate up to kD

• Einstein: optical modes represented
by modes of ωE

• The Debye temperature divides the
quantum and classical statistical
regimes:
kBΘD = h̄ωD = h̄ckD = h̄c

3
√
6π2n



Measuring Phonon Dispersion Relations

• Normal mode dispersion relations
ωs(k) can be extracted from
experiments in which lattice vibrations
exchange energy with an external
probe

• Energy lost (or gained) by a neutron
⇒ emission (or absorption) of a

phonon

• The same applies or X-rays or visible
light

• Neutrons carry more momentum than
photons in the energy range of interest



Neutron Scattering by a Crystal

• Neutrons only interact strongly with
the atomic nuclei, and so will pass
through a crystal, possibly with a
changed E = p2/2Mn and p

• Conservation laws allow the extraction
of information from the scattering

• The conservation of energy:
E′ = E −

∑

ks h̄ωs(k)∆nks,

∆nks = n′
ks − nks

• The conservation of crystal
momentum:
p′ − p =

∑

ks h̄k∆nks + K

• This is the same crystal momentum as
for the Bloch states – important for
theories of electron-phonon scattering

• Different numbers of phonons can be
involved in a scattering event



Zero Phonon Scattering

• The final state is identical to the initial
state

• Energy conservation implies that the
energy of the neutron is unchanged
(elastically scattered): q′ = q

• Crystal momentum conservation
implies that the neutron’s momentum

changes by h̄K: q′ = q + K

• These are just the von Laue conditions

• We can extract the same
crystallographic information of the
static lattice as from X-ray diffraction
experiments



One Phonon Scattering

• The situation where one phonon is
absorbed or emitted conveys the most
information

• The conservation laws imply:
E′ = E ± h̄ωs(k)
p′ = p± h̄k + h̄K

• The additive K can be ignored
because ωs(k + K) = ωs(k)

• For the absorption case:
p′2

2Mn
= p2

2Mn
+ h̄ωs(

p′−p

h̄ )

• In an experiment we control p and E

• We can choose a direction in which to
measure, and record the energy E′ to
map out the dispersion curves ωs(k)

• Multi-phonon scattering events
produce a background


