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THE BREAKDOWN OF THE STATIC LATTICE MODEL

e The free electron model was refined e The classical static lattice can only be
by introducing a crystalline external valid for T=0K
potential

e It is even wrong for T=0K:

: . AxAp > h / nt t1
e This allows much progress, but is not TAPp = v = 4€T0 point motion

the full stor
Y e This is a particular problem for

insulators: unless kT > E, there
e lons are not infinitely massive, nor are no degrees of freedom to account
held in place by infinitely strong forces for their many properties



EQUILIBRIUM PROPERTIES

cubic (lattice)

linear (electronic)

— the electronic degrees of freedom
alone cannot explain experiment

saturated

e Density and cohesive energy

— zero point motion is important for
solid neon and argon, and dominant
for solid helium (a quantum solid)

e Thermal expansion of insulators

e Specific heat of a metal:

— electronic contribution negligible
for k1T < E,



TRANSPORT PROPERTIES

e Conductivity — no vibrations, no superconductors

— in a perfect metallic crystal there
are no collisions and perfect ® Thermal conductivity of insulators
conduction

— lattice vibrations provide the
scattering mechanisms

— the electronic degrees of freedom
are not sufficient
e Superconductivity e Transmission of sound

— interaction between two electrons — sound waves are carried by
via lattice vibrations vibrations of the lattice



INTERACTION WITH RADIATION

e Reflectivity of ionic crystals e X-ray scattering
— Sharp maximum in infrared, far — thermal vibrations and zero point
below hw = FE, motion diminish the intensity of the
— E-field applies opposite forces on =+ peaks
ions — there is a background in directions

not satisfying the Bragg condition

e Inelastic scattering of light e Neutron scattering

— small frequency shifts (Brillouin or — momentum transfer with the lattice
Raman scattering) is discrete, and provides a probe of
— understood via lattice vibrations the lattice vibrations



A CLASSICAL THEORY OF THE HARMONIC CRYSTAL

e A general treatment of the deviation Bravais lattice remains as an average
of ions from their equilibrium positions  of the instantaneous configurations
is intractable, so proceed in stages:

1. Treat small deviations classically e Denote the position of an atom whose

2. Proceed to a quantum theory mean position is R by r(R):
3. Examine implications of larger r(R)=R +u(R)
movements

e The dynamics of the lattice s

e To treat the small deviations, we _ a
governed by the classical Hamiltonian:

assume each ion stays in the vicinity
of its equilibrium position R, and the >ron tU




THE HARMONIC APPROXIMATION

U e 3D Taylor expand the potential energy
around the equilibrium configuration:
flr+a)=f(r)+a-Vf(r)+
(2 V)2 f(r) + O(a®)

e At equilibrium the net force is zero,

and the potential energy is given by:
U =U¢e 1+ Uharm

e The general form for UM™ js:

gharm = 15 e o un(R) Dy (R — R)u, (R)




THE ADIABATIC APPROXIMATION

e The quantities D in the harmonic configuration = the wavefunctions
expansion are in general very difficult change as the ions move
to calculate

e Make the adiabatic approximation by

long ranged coulomb interactions the motion of the electrons and ions
e In covalent/metallic crystals the — the electrons are in their
difficulty comes from the fact that the groundstate for any configuration

contribution to the total energy of the
valence electrons depends on the ionic @ D is still difficult to calculate



NORMAL MODES OF A 1D BRAVAIS LATTICE

M M M M M M M M M

Masses M and springs K

Born-von Karman BC's

e Consider ions of mass M separated by
distance a

e For simplicity, assume  nearest
neighbour interactions only

e In the Harmonic approximation, this
is equivalent to masses connected by
springs of strength K:

Mii(na) = —gg(hzzgl Uharm —

5K 32 [u(na) — u((n + 1)a)]?




NORMAL MODES OF A 1D BRAVAIS LATTICE

(k)

Ta

Seek solutions of the form:
u(na,t) X ei(kna,—wt)

The PBCs = ¢*Vo =1 = f =27
with n integer, N solutions and
E<k<s

Rl
N

Substitution into the dynamical eqn.

gives: w(k) = 2,/ Ksin(ka/2)

The group and phase velocities differ
substantially at the zone boundaries



NORMAL MODES OF A 1D BRAVAIS LATTICE WITH A BASIS

\ o
2(K+G)
M WES

e The analysis can be repeated

e [he are 2 solutions for each k = 2N

A solutions in total:
| w? = —KAJZG:I:ﬁ\/[@ + G2 4+ 2K Gcos ke

a e There are acoustic and optical modes

-Ta 0 a
—_— ——— —_— ———— —_— ————

—_— —e —-.— @ @ —— @ —  —



NORMAL MODES OF A 3D BRAVAIS LATTICE

(K

e The dynamical matriz is D(k) =

S e D(R)e™™ R where D(R —R/)
is the second derivative of U with
respect to the displacement of ions at
R and R’ at eqbm..

The solution of the dynamical
equation is given by the eigen-
equation Mw?e = D(k)e, where e
is the polarization vector

e 3N solutions for each ion in the basis



NORMAL MODES OF A REAL CRYSTAL

500 T T e [he dynamical matrix can be built up
.......... ' ' A from first principles calculations
e Can use a supercell approach to study
%0~ \ / y certain high symmetry k-vectors
wof- el T R e For arbitary k£ use linear response
, .« y ﬁ : theory — a perturbation theory

w L r X W K

Dispersion curves for Silicon



CONNECTIONS WITH THE THEORY OF ELASTICITY

e The classical theory of elasticity slowly over the atomic length scale
ignores  the microscopic atomic

structure e Using the symmetries of D:
ghem — %ZRR’
e The continuum theory of elasticity can  [u(R’) — u(R)|D(R — R/)[u(R’) — u(]
be derived from the theory of lattice
vibrations e Slowly varying displacements =
u(R/) =
e Consider displacements that vary u(R)+ (R'—R)-Vu(r)|,=r

arm ouy, (R ouy (R
Uh — %ZR,/LVO"T ( (‘;zc(a )) ( 8$(T )) EJ,L”'V EU/“'V — _% ZR RUDMV(R)RT




A QUANTUM THEORY OF THE HARMONIC CRYSTAL

e In a Quantum theory the system can independent oscillators = the 3N
be in a set of discrete stationary states  classical normal modes

o These stationary states are thee The energy in each mode is discrete,
eigenstates of the harmonic  and the total energy is:
2
Hamiltonian: HMm = S~ PUT L B — 57 (s + 5)fiws (k)
5 2 rr W(R)DR — R)u(R)

e The integer nygs is the excitation
e The result is: an N-ion harmonic number of the normal mode in branch
crystal is equivalent to 3N s at wave vector k



NORMAL MODES

e So far we have described the state in e
terms of the excitation number ny

e This is clumsy if describing processes
involving the exchange of energy
— between normal modes, or other e
systems (electrons, neutrons or X-

rays)

e As for the QM theory of the EM
field we use an equivalent corpuscular e
description

OR PHONONS

Instead of saying that the mode k,s is
in the ny excited state we say there
are nys phonons of type s with wave
vector k

Photons =- of the correct frequency
are visible light

Phonons = of the correct frequency
are sound

Don't forget phonons/normal modes
are equivalent



CLASSICAL SPECIFIC HEAT: DULONG-PETIT

e The thermal energy density is given @ The thermal energy density is:
by averaging over all configurations w« = u°Y+ 3nkgT, (n=N/V)
weighted by e 7% with 3 = —=

kpT
S dre P H e The specific heat is independent of T
-V drem P ¢, = 3nkp
_ 1 0 —BH v —

e This is not observed experimentally

— only approximately at high

e By making a change of variables: temperature where the harmonic
fdre_ﬁH = ¢ AU 33N x constant approximation is bad anyway



THE QUANTUM MECHANICAL LATTICE SPECIFIC HEAT

e The QM thermal energy density is: e The energy density is :
w= S B S e = 5 el +
= —v paln > e b
e The mean excitation number ng(k) =
e The sum is over the stationary states eﬁhwsl(k)_l is the Bose-Einstein

with energy: distribution function
By = Yy (niy + Hhwy(k),
N, = 0,1,2,... e The specific heat is given by:

—BE; __ e Phws(k)/2 — L 0 fitgk
3, e = Tt ot 0 =¥ L ST




THE HIGH-TEMPERATURE LATTICE SPECIFIC HEAT

o When kT > hws(k) all the normal ¢, =15 é%kBT =30 kpg
modes are highly excited

o Writing Bhws(k) — = then z is small e [he next term is constant in T’

and we can expand:
ew1—1 — %[1 —Z4 ff_; + O(2?)] o We_might try to correct the_ Dulong-
Petit law, but anharmonic terms
e Keeping just the leading term we are likely to dominate where the
regain the Dulong-Petit law: expansion holds — or the crystal melts!




(k)




THE LOW-TEMPERATURE LATTICE SPECIFIC HEAT

e |n the limit of a large crystal integrate 1. lgnore the optical modes
over the 1%% Brillouin zone: 2. Use the dispersion relationship:

hws(k %
= o7 2 ) (2w>3eﬁhws<<k> ws(k) = cs(k)k
3. Integrate over all k

e Modes with hwy(k) > kT will not

contribute — but the acoustic branches
will at long enough wavelengths for ® Making the substitution Bhes(k)k =
x we obtain, and c¢ as the average

any T’
speed of sound:

e Make some approximations:

(kBCT)4 X TS




INTERMEDIATE TEMPERATURE: THE DEBYE AND EINSTEIN
MODELS

e The T2 relation only remains valid
while the thermal energy is small
compared to the energy of phonons
with a non-linear dispersion (much e
lower than room temperature)

e The Debye and Einstein models o
approximate the dispersion relations

e Debye:

all branches modelled by 3

acoustic modes, all with w = ¢k, and
integrate up to kp

Einstein: optical modes represented
by modes of wg

The Debye temperature divides the
quantum and classical statistical
regimes:

kg®p = hwp = hekp = hev6m2n



MEASURING PHONON DISPERSION RELATIONS

e Normal mode dispersion relations phonon
ws(k) can be extracted from
experiments in which lattice vibrations
exchange energy with an external
probe

e The same applies or X-rays or visible
light

e Energy lost (or gained) by a neutron @ Neutrons carry more momentum than
= emission (or absorption) of a photonsin the energy range of interest



NEUTRON SCATTERING BY A CRYSTAL

o Neutrons only interact strongly with  Any, = n] — nys
the atomic nuclei, and so will pass

through a crystal, possibly with a ¢ The conservation of  crystal
changed E = p2/2Mn and P momentum:

. | P — P =), ikAng + K
e Conservation laws allow the extraction

of information from the scattering ¢ Thjs is the same crystal momentum as

for the Bloch states — important for
theories of electron-phonon scattering

e The conservation of energy: e Different numbers of phonons can be
E'=F -5  hws(k)Angs, involved in a scattering event



ZERO PHONON SCATTERING

e The final state is identical to the initial changes by AK: ¢’ = q+ K
state

.. . e [ hese are just the von Laue conditions
e Energy conservation implies that the )

energy of the neutron is unchanged
(elastically scattered): ¢’ = q e We can extract the same
crystallographic information of the
e Crystal momentum  conservation static lattice as from X-ray diffraction
implies that the neutron’'s momentum  experiments



ONE PHONON SCATTERING

e The situation where one phonon is e
absorbed or emitted conveys the most

information

e T[he conservation laws imply:
E' = FE + hws(k)
p'=p+hk+ K

e The additive K can be
because wy(k + K) = ws(k)

ignored e

For the absorption case:
12 2

/_
aar, — g, +ws (PR

In an experiment we control p and F

We can choose a direction in which to
measure, and record the energy E’ to
map out the dispersion curves wg(k)

Multi-phonon scattering  events
produce a background



