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ELECTRONS IN CRYSTALS

e The electrons in a crystal experience
a potential with the periodicity of the
Bravais lattice: U(r + R) = U(r)

e The scale of the periodicity is of the
order of the de Broglie wavelength of
an electron — 1A— so we must use
Quantum Mechanics

e Of course, the periodicity is an
idealisation: impurities, defects,

Clartoon of electrons (blue) in motion . . . .
f (blue) thermal vibrations, finite size effects



THE PERIODIC POTENTIAL

A 1D periodic crystalline potential

In principle, we are faced with a many
electron problem

But we can make a ot of
progress using the independent
electron approximation

We investigate the properties of the
Schrodinger equation for a single
electron:

HU = (—2V2 4+ U(r)¥ = BV
with U(r + R) = U(r)



Brocu’s THEOREM

e Independent electrons which obey the
one electron Schrodinger equation for
a periodic potential are called Bloch
electrons and obey Bloch's theorem

e Bloch's theorem can be written in two
equivalent forms




PRrROOF OF BLOCH’S THEOREM

Consider the translation operator:
Trf(r) = f(r+R)
It forms a commuting set for all R and H:
TRHY(r) =H(r+R)¥Y(r+R)=H(r)V(r+R) = HIRV(r)

TRH = HIgr
IRIg = IRIR = IR4R/



The eigenstates of H are simultaneous eigenstates of all TR:
HY(r) = EY(r)

TrRY(r) = c(R)¥(r)
The properties of Tgr imply a relationship between the eigenvalues:

TrRTR'Y(r) = ¢(R)Tr'¥(r) = ¢(R)c(R/)¥(r)

TrRTR'Y(r) = Tror'Y(r) = ¢(R+ R )¥(r)
and so:
¢(R)c(R') = c¢(R+R)
If a; are the primitive lattice vectors, we can always write:

c(az-) — 627T'i33i



For an arbitrary Bravais lattice vector:
R = nja; + ngas + nsas
and so, considering repeated applications of T}, :
¢(R) = c(a;)"c(az)™c(az)™ = ™R

where bz Ay = 27T57;j and k = ZElbl + $2b2 + .Cligbg

We arrive at the second form of Bloch's Theorem:

TrY(r) = ¥(r + R) = ¢(R)¥(r) = e*RU(r)




BORN-VON KARMAN BOUNDARY CONDITIONS

Apply periodic BCs to a commensurate  The allowed Bloch wave vectors are:
supercell:

3
m
k = —b;
\If(r—i—NzaZ) :\I/(I'), 1= 1,2,3 ;Nz
and then Bloch's theorem: and the volume Ak of k-space per k:
1} N.a.) = etVik-aiy 1 (2m)°
nk(r + N;a;) = e nk(T) Ak = —b; - (by x bs) =
N %
etk = 2miNimi — The number of allowed k-vectors in the

which means that x; = m;/N; primitive cell of the reciprocal lattice is
equal to the number of cells in the crystal



THE FIRST BRILLOUIN ZONE

e The wave vector k can always be
’ confined to the first Brillouin zone
(or any primitive cell of the reciprocal

lattice)

e Any Kk’ not in the first Brillouin zone
can be written as: k/ = k+ K, where

k is in the first Brillouin zone and
6iK-R —1

e The labels K,L,W,X and I' are high
The first FCC Brillouin zone symmetry points in the Brillouin zone



BAND STRUCTURE

e For a given k there many solutions to
the Schrodinger equation:

| \‘1 | | Hyuy, = Ekuk(r), uk(r) = uk(r + R)
'\ e The boundary condition ensure that

/ there are many (labelled n) discretely
spaced eigenvalues

‘o‘ e The Hamiltonian depends on k as
%

a parameter, and so the eigenvalues

w ] r WK vary continuously with wave vector for
FCC free electron bandstructure a given n. Hence, they are bands




CRYSTAL MOMENTUM

e For Bloch electrons k is not p, and known as crystal momentum
proportional to electronic momentum

e The dynamical significance of hk

E,V\an _ zv(eik-runk(r)) is revealed by cc?nsidering eIectron.s
t l response to applied electromagnetic
h fields

= kU, + X TV,
i

e A quantum number characteristic
e The W, are not momentum of the translational symmetry of
eigenstates the periodic potential, as p s
characteristic of the full translational

e However, Ak is a natural extension of symmetry of free space



VELOCITY AND EFFECTIVE MASS

e The velocity of an electron at k in
band n is given by the gradient of the
band and the inverse effective mass is

' given by the curvature

e The velocity operator is:
v =dr/dt = (1/ih)[r, H = p/m
= hV /im

e Electrons in a perfect crystal move at
a constant mean velocity




DENSITY OF STATES

e Many electronic  properties are ¢= [dEg(E)Q(F)
weighted sums over the electronic

levels of the form: e The density of states of a band is:

Q=23 @n(k) gu(E) = [ K §(E — E,(k))

which is an integral in a large crystal:

CI—QZ f(2 )3

e Often @, (k) depends only on n and —
k through E,(k), and the density of Sn(E) 47T3|VEn(k)|
states g(E) = > gn(E) is a useful with Sn( ) a surface of constant
construct: energy

e |t can be written as a surface integral:




VAN HOVE SINGULARITIES

e Because FE,(k) is periodic ine In 1D this results in a divergence of
reciprocal space, and for each n the density of states itself
bounded from above an below, and

differentiable everywhere there must

be k for which |VE| = 0 e In 3D the divergence is integrable, and

results in discontinuities in dg,,/dE

e Thus, the integrand in the expression
for g,,(F) diverges e These are the van Hove singularities
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METALS AND INSULATORS

e Fill the electronic states, lowest energy

first across the whole first Brillouin
zone (so that each level is counted
only once), until all the electons are
accomodated

If there is a gap between the
highest occupied state and the lowest
unoccupied the crystal is an nsulator
(and a called a semiconductor if the
gap is close to kpT)



THE FERMI SURFACE

e |f there is no gap then the crystal is a

@ | metal

e s 1 s e There will be a surface in k-space
j separating occupied from unoccupied
e | levels: this is known as the Ferm:

surface and may consist of several

branches. |t determines the transport
and optical properties of the metal




THE FERMI SURFACE

e |f there is no gap then the crystal is a
metal

e There will be a surface in k-space
separating occupied from unoccupied
levels: this is known as the Fermsi
surface and may consist of several
branches. It determines the transport
and optical properties of the metal




ELECTRONS IN A REALISTIC CRYSTAL POTENTIAL

e In principle, it remains only to solve
the Schrodinger's equation for the
Bloch wavefunctions

e This might be viewed as a job of pure
numerics — aside from the choice of
Ul(r)

e But we can do better than brute force
— and with greater understanding




THE NEARLY FREE ELECTRON APPROXIMATION

o) {

T
Ki K

Defining near degeneracy

e Possibly suprisingly, the electronic

structure of some metals is considered
to arise from a weak periodic
perturbation of the free electron gas

This is due to the combined effects
of the Pauli exclusion principle and
Screening

The perturbation has different results,
depending whether the free electron
states are nearly degenerate or not



THE NEARLY FREE ELECTRON APPROXIMATION

E o |[f there is near degeneracy, the
perturbation can be linear in the
potential

e Symmetries and structure factor
T aud effects can eliminate the splitting —
returns with spin-orbit coupling

N | K
0 2K K

Splitting at a single Bragg plane
g g 9 e [he bandstructure can be plotted in

the reduced or extended or repeated

o If there is no degeneracy, the
zone schemes

pertubation is second order in Uk



FREE ELECTRON AND A REAL BANDSTRUCTURE

WL r X W KW L - X W K
The free electron and DFT bandstructure of FCC Aluminium



THE TIGHT BINDING APPROXIMATION

e Now, let's think of the electronic
structure as being a modification of
that of the isolated constituent atoms

e This is a good picture if the overlap
of the atomic wavefunctions is small

2s

e Clearly, this is not the case for metallic
Sodium electronic wavefunctions — sodium — it is a nearly free electron
separated by 3.74 metal



THE TIGHT BINDING APPROXIMATION

e To calculate the corrections, consider:
H — Hat —|— AU(I‘)

e The general form of the wavefunction
is: (r) =Y g e*Ro(r — R) where
s O(r) = 2, bntn(r)

e There is a strong hybridisation and

splitting of levels close to each other in

When r¢(r) is large, AU(r) is small ~ energy — recall the nearly free electron
and vice versa model




THE TIiGHT BINDING S-BAND

Consider a single s-band: |¢x) = > e Ra)g)

Multiply: Hl|vyx) = (Ha + AU) k) = Ek|ik) through by (15| and integrate
using <¢S|Hat‘ws> = L.

(6 — E){slt) = (0| AU = & = B, + (120l

lgnoring the devations from unity of the denominator, summing over the nearest
neighbours only, and using the inversion symmetry of the potential:

E = Es + (5| AU |s) + 3, cos(k - R) [ 45 (r)AU(R)¢s(r — R)dr




THE TIiGHT BINDING S-BAND

2p

2s

Sodium in a Simple Cubic cell of side 3.7A:
&k = a — B(cos aky + cos ak, + cos ak,)

X



VALENCE BAND WAVEFUNCTIONS

2s

Sodium electronic wavefunctions —
separated by 3.7A

e All electonic structure methods must

face up to a truth: the valence
wavefunctions are difficult to describe
in any one way

They are smooth in the interstitial
regions, and oscillatory in the core
regions

This 1s because the valence
wavefunctions must be orthogonal to
the core states



ELECTRONIC STRUCTURE METHODS

e The Cellular method

e The Augmented Plane-wave method
The Cellular potential (APW)

e The Green's Function method (KKR)

e The Orthogonalised Plane-wave

The Muffin Tin potential method (OPW)



THE PSEUDOPOTENTIAL APPROACH

e The pseudopotential was originally
thought of as the weaker effective
potential due to the orthogonality of
the valence to the core wavefunctions

e This concept provided a justification
and theoretical framework for the
nearly free electron approximation

e The true power of the method
unleashed by much later ab wnitio
formulations



THE PSEUDOPOTENTIAL SCHEME

qus(r)

‘_ .--"viquae(r) T,

Voelr)

Vel

Do an all electron atomic calculation

Choose a core radius, and pseudise
the atomic wavefunctions in the
channels of interest

The simplest schemes conserve the
norm but this can be relaxed

Invert the Schrodinger equation to
find the pseudopotential



THE PSEUDOPOTENTIAL SCHEME

lPlos(r)

Vo)

Veelr)

e The resulting pseudopotential will
reproduce the reference eigenstates
by construction, and is nonlocal in
general

o Transferability is of great importance
— the potentials should be tested
extensively

e There may be ghost states



PROJECTOR AUGMENTED WAVES

e The Projector Augmented Wave following:

approach puts pseudopotential theory 7 =1+ ¢ [|¢r.n) — |OR.m)] (PR .|
on a firm theoretical footing

e The projectors are defined so that:

e It defines an operator 7 which N ~
<pR,n|</5R/,m> = 5R,R/5n,m

maps pseudowavefunctions to the all

electron wavefunctions: |¥) = 7T|¥)
e Pseudo operators can be defined:

e This operator can be chosen to bethe O =71t0T

O|$R,m>] <15R,m|

O =0 + ZR,n,m ‘ﬁR,n>[<¢R,n|O|¢R,m> — <§BR,TL




DERIVING THE PSEUDO HAMILTONIAN

e The PAW scheme can be applied to the all electron Hamiltonian H
H=T"HT = 5p* +V + [)[(¢|30° + V|6) — (3l30” + V|)](B

add and subract V' — V'!°¢ which is localised:

H = 3p? + V1(r) + g V&'

e An arbitary choice for the local potential V!°¢(r) is made and the nonlocal
potential is of the form:

an — Zn,m ‘ﬁR,n>af§,m<ﬁR,m’



