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Electrons in Crystals

Cartoon of electrons (blue) in motion

• The electrons in a crystal experience
a potential with the periodicity of the
Bravais lattice: U(r + R) = U(r)

• The scale of the periodicity is of the
order of the de Broglie wavelength of
an electron — 1Å— so we must use
Quantum Mechanics

• Of course, the periodicity is an
idealisation: impurities, defects,
thermal vibrations, finite size effects



The Periodic Potential

A 1D periodic crystalline potential

• In principle, we are faced with a many
electron problem

• But we can make a lot of
progress using the independent
electron approximation

• We investigate the properties of the
Schrödinger equation for a single
electron:
HΨ = (− h̄2

2m∇2 + U(r))Ψ = EΨ
with U(r + R) = U(r)



Bloch’s Theorem

Ψnk(r) = eik·runk(r)

unk(r + R) = unk(r)

Ψnk(r + R) = eik·RΨnk(r)

• Independent electrons which obey the
one electron Schrödinger equation for
a periodic potential are called Bloch
electrons and obey Bloch’s theorem

• Bloch’s theorem can be written in two
equivalent forms



Proof of Bloch’s Theorem

Consider the translation operator:

TRf(r) = f(r + R)

It forms a commuting set for all R and H:

TRHΨ(r) = H(r + R)Ψ(r + R) = H(r)Ψ(r + R) = HTRΨ(r)

TRH = HTR

TRTR′ = TR′TR = TR+R′



The eigenstates of H are simultaneous eigenstates of all TR:

HΨ(r) = EΨ(r)

TRΨ(r) = c(R)Ψ(r)

The properties of TR imply a relationship between the eigenvalues:

TRTR′Ψ(r) = c(R)TR′Ψ(r) = c(R)c(R′)Ψ(r)

TRTR′Ψ(r) = TR+R′Ψ(r) = c(R + R′)Ψ(r)

and so:
c(R)c(R′) = c(R + R′)

If ai are the primitive lattice vectors, we can always write:

c(ai) = e2πixi



For an arbitrary Bravais lattice vector:

R = n1a1 + n2a2 + n3a3

and so, considering repeated applications of Tai
:

c(R) = c(a1)
n1c(a2)

n2c(a3)
n3 = eik·R

where bi · aj = 2πδij and k = x1b1 + x2b2 + x3b3

We arrive at the second form of Bloch’s Theorem:

TRΨ(r) = Ψ(r + R) = c(R)Ψ(r) = eik·RΨ(r)



Born-von Karman Boundary Conditions

Apply periodic BCs to a commensurate
supercell:

Ψ(r +Niai) = Ψ(r), i = 1, 2, 3

and then Bloch’s theorem:

Ψnk(r +Niai) = eiNik·aiΨnk(r)

eiNik·ai = e2πiNixi = 1

which means that xi = mi/Ni

The allowed Bloch wave vectors are:

k =

3∑

i=1

mi

Ni
bi

and the volume ∆k of k-space per k:

∆k =
1

N
b1 · (b2 × b3) =

(2π)3

V

The number of allowed k-vectors in the
primitive cell of the reciprocal lattice is
equal to the number of cells in the crystal



The First Brillouin Zone
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The first FCC Brillouin zone

• The wave vector k can always be
confined to the first Brillouin zone
(or any primitive cell of the reciprocal
lattice)

• Any k′ not in the first Brillouin zone
can be written as: k′ = k+K, where
k is in the first Brillouin zone and
eiK·R = 1

• The labels K,L,W,X and Γ are high
symmetry points in the Brillouin zone



Band Structure
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FCC free electron bandstructure

• For a given k there many solutions to
the Schrödinger equation:
Hkuk = Ekuk(r), uk(r) = uk(r + R)

• The boundary condition ensure that
there are many (labelled n) discretely
spaced eigenvalues

• The Hamiltonian depends on k as
a parameter, and so the eigenvalues
vary continuously with wave vector for
a given n. Hence, they are bands



Crystal Momentum

• For Bloch electrons k is not
proportional to electronic momentum

h̄

i
∇Ψnk =

h̄

i
∇(eik·runk(r))

= h̄kΨnk + eik·r
h̄

i
∇unk

• The Ψnk are not momentum
eigenstates

• However, h̄k is a natural extension of

p, and known as crystal momentum

• The dynamical significance of h̄k
is revealed by considering electrons
response to applied electromagnetic
fields

• A quantum number characteristic
of the translational symmetry of
the periodic potential, as p is
characteristic of the full translational
symmetry of free space



Velocity and Effective Mass
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V=0

V=hk/m

• The velocity of an electron at k in
band n is given by the gradient of the
band and the inverse effective mass is
given by the curvature

• The velocity operator is:
v = dr/dt = (1/ih̄)[r, H] = p/m
= h̄∇/im

• Electrons in a perfect crystal move at
a constant mean velocity



Density of States

• Many electronic properties are
weighted sums over the electronic
levels of the form:
Q = 2

∑
nkQn(k)

which is an integral in a large crystal:
q = 2

∑
n

∫
dk

(2π)3
Qn(k)

• Often Qn(k) depends only on n and
k through En(k), and the density of
states g(E) =

∑
n gn(E) is a useful

construct:

q =
∫
dEg(E)Q(E)

• The density of states of a band is:

gn(E) =
∫

dk
4π3δ(E − En(k))

• It can be written as a surface integral:

gn(E) =
∫
Sn(E)

dS
4π3

1
|∇En(k)|

with Sn(E) a surface of constant
energy



Van Hove Singularities

• Because En(k) is periodic in
reciprocal space, and for each n
bounded from above an below, and
differentiable everywhere there must
be k for which |∇E| = 0

• Thus, the integrand in the expression
for gn(E) diverges

• In 1D this results in a divergence of
the density of states itself

• In 3D the divergence is integrable, and
results in discontinuities in dgn/dE

• These are the van Hove singularities



Metals and Insulators

• Fill the electronic states, lowest energy
first across the whole first Brillouin
zone (so that each level is counted
only once), until all the electons are
accomodated

• If there is a gap between the
highest occupied state and the lowest
unoccupied the crystal is an insulator
(and a called a semiconductor if the
gap is close to kBT )



The Fermi Surface

• If there is no gap then the crystal is a
metal

• There will be a surface in k-space
separating occupied from unoccupied
levels: this is known as the Fermi
surface and may consist of several
branches. It determines the transport
and optical properties of the metal



The Fermi Surface

BeAl

Li K

Zn Y

• If there is no gap then the crystal is a
metal

• There will be a surface in k-space
separating occupied from unoccupied
levels: this is known as the Fermi
surface and may consist of several
branches. It determines the transport
and optical properties of the metal



Electrons in a Realistic Crystal Potential

• In principle, it remains only to solve
the Schrödinger’s equation for the
Bloch wavefunctions

• This might be viewed as a job of pure
numerics – aside from the choice of
U(r)

• But we can do better than brute force
– and with greater understanding



The Nearly Free Electron Approximation
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Defining near degeneracy

• Possibly suprisingly, the electronic
structure of some metals is considered
to arise from a weak periodic
perturbation of the free electron gas

• This is due to the combined effects
of the Pauli exclusion principle and
screening

• The perturbation has different results,
depending whether the free electron
states are nearly degenerate or not



The Nearly Free Electron Approximation
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Splitting at a single Bragg plane

• If there is no degeneracy, the
pertubation is second order in UK

• If there is near degeneracy, the
perturbation can be linear in the
potential

• Symmetries and structure factor
effects can eliminate the splitting –
returns with spin-orbit coupling

• The bandstructure can be plotted in
the reduced or extended or repeated
zone schemes



Free electron and a Real Bandstructure
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The free electron and DFT bandstructure of FCC Aluminium



The Tight Binding Approximation
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Sodium electronic wavefunctions –
separated by 3.7Å

• Now, let’s think of the electronic
structure as being a modification of
that of the isolated constituent atoms

• This is a good picture if the overlap
of the atomic wavefunctions is small

• Clearly, this is not the case for metallic
sodium – it is a nearly free electron
metal



The Tight Binding Approximation

∆U(r)

rφ

When rφ(r) is large, ∆U(r) is small
and vice versa

• To calculate the corrections, consider:
H = Hat +∆U(r)

• The general form of the wavefunction
is: ψ(r) =

∑
R e

ik·Rφ(r − R) where
φ(r) =

∑
n bnψn(r)

• There is a strong hybridisation and
splitting of levels close to each other in
energy – recall the nearly free electron
model



The Tight Binding s-Band

Consider a single s-band: |ψk〉 =
∑

R e
ik·R|ψs〉

Multiply: H|ψk〉 = (Hat + ∆U)|ψk〉 = Ek|ψk〉 through by 〈ψs| and integrate
using 〈ψs|Hat|ψs〉 = Es:

(Ek − Es)〈ψs|ψk〉 = 〈ψs|∆U |ψk〉 ⇒ Ek = Es +
〈ψs|∆U |ψk〉
〈ψs|ψk〉

Ignoring the devations from unity of the denominator, summing over the nearest
neighbours only, and using the inversion symmetry of the potential:

Ek = Es + 〈ψs|∆U |ψs〉+
∑
nn cos(k · R)

∫
ψ∗
s(r)∆U(R)ψs(r − R)dr



The Tight Binding s-Band
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Sodium in a Simple Cubic cell of side 3.7Å:
Ek = α− β(cos akx + cos aky + cos akz)



Valence Band Wavefunctions
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Sodium electronic wavefunctions –
separated by 3.7Å

• All electonic structure methods must
face up to a truth: the valence
wavefunctions are difficult to describe
in any one way

• They are smooth in the interstitial
regions, and oscillatory in the core
regions

• This is because the valence
wavefunctions must be orthogonal to
the core states



Electronic Structure Methods

The Cellular potential

The Muffin Tin potential

• The Cellular method

• The Augmented Plane-wave method
(APW)

• The Green’s Function method (KKR)

• The Orthogonalised Plane-wave
method (OPW)



The Pseudopotential Approach
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• The pseudopotential was originally
thought of as the weaker effective
potential due to the orthogonality of
the valence to the core wavefunctions

• This concept provided a justification
and theoretical framework for the
nearly free electron approximation

• The true power of the method
unleashed by much later ab initio
formulations



The Pseudopotential Scheme

Vae(r)

Vps(r)

rc

Ψ (r)ps

Ψae (r)

• Do an all electron atomic calculation

• Choose a core radius, and pseudise
the atomic wavefunctions in the
channels of interest

• The simplest schemes conserve the
norm but this can be relaxed

• Invert the Schrödinger equation to
find the pseudopotential



The Pseudopotential Scheme

Vae(r)

Vps(r)
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• The resulting pseudopotential will
reproduce the reference eigenstates
by construction, and is nonlocal in
general

• Transferability is of great importance
– the potentials should be tested
extensively

• There may be ghost states



Projector Augmented Waves

• The Projector Augmented Wave
approach puts pseudopotential theory
on a firm theoretical footing

• It defines an operator T which
maps pseudowavefunctions to the all
electron wavefunctions: |Ψ〉 = T |Ψ̃〉

• This operator can be chosen to be the

following:
T = 1+

∑
R,n[|φR,n〉− |φ̃R,n〉]〈p̃R,n|

• The projectors are defined so that:
〈p̃R,n|φ̃R′,m〉 = δR,R′δn,m

• Pseudo operators can be defined:
Õ = T +OT

Õ = O +
∑

R,n,m |p̃R,n〉[〈φR,n|O|φR,m〉 − 〈φ̃R,n|O|φ̃R,m〉]〈p̃R,m|



Deriving the Pseudo Hamiltonian

• The PAW scheme can be applied to the all electron Hamiltonian H

H̃ = T +HT = 1
2p

2 + V + |p̃〉[〈φ|12p
2 + V |φ〉 − 〈φ̃|12p

2 + V |φ̃〉]〈p̃|

add and subract V − V loc which is localised:

H̃ = 1
2p

2 + V loc(r) +
∑

R V
nl
R

• An arbitary choice for the local potential V loc(r) is made and the nonlocal
potential is of the form:

V nl
R =

∑
n,m |p̃R,n〉a

R
n,m〈p̃R,m|


