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THE KOHN-SHAM EQUATIONS

Eionl{i}] = =23, I [ 4,V ydr

The charge density is written as:

£ Vel (r) = 255, i)
[r—r’ The potentials are given by functional

+ Been()] + Bion(Ry) derivatives:
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CORE AND VALENCE ELECTRONS

Carbon Atom

All-electron Charge Density

Radius (Bohr)

e Core electrons don't take part in
bonding (definition!)

Level Energy(Ry) Occupation

1s -19.90408 2.000
2s -1.00279 2.000
2p -0.39838 2.000

e To avoid calculating the properties of
the (possibly many) core electrons we
can invent pseudopotentials



THE PSEUDOPOTENTIAL APPROACH

e The pseudopotential was originally
thought of as the weaker effective
potential due to the orthogonality of
the valence to the core wavefunctions

e This concept provided a justification
and theoretical framework for the
nearly free electron approximation

e The true power of the method
unleashed by much later ab initio
formulations



THE PSEUDOPOTENTIAL SCHEME
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Do an all electron atomic calculation

Choose a core radius, and pseudise
the atomic wavefunctions in the
channels of interest

The simplest schemes conserve the
norm but this can be relaxed

Invert the Schrodinger equation to
find the pseudopotential



THE PSEUDOPOTENTIAL SCHEME
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e The resulting pseudopotential will
reproduce the reference eigenstates
by construction, and is nonlocal in
general

e Transferability is of great importance
— the potentials should be tested
extensively

e There may be ghost states



IT WORKS!

Material Expt Theory Delta Type

LaBi 6.57 6.643 1.2%  alloy

CaF, 5.4626 5.496 0.6%  halide

Ag 4.086 4.112 0.6% metal

V 3.028 3.019 -0.3% metal

ZrN 4.62 4.634 0.3% misc

NbO 42103 4.2344 0.6% oxide

GaAs 5.653  5.663 0.2%  semiconductor
CoSiy 5.36 5.3 -1.1% silicide
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A REMINDER

A comparison of theory with experiment

A large selection of inorganic crystals
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e We got all this from

— Schrodinger’'s Equation

— Density functional theory

— a many-body uniform electron gas
— some clever approximations

Milman, Winkler, White, Pickard, Payne, Akhmatskaya, and Nobes.
Electronic structure, properties and phase stability of inorganic crystals:
The pseudopotential plane-wave approach.

International Journal of Quantum Chemistry, 77:895-910, 2000.



WE MADE LOTS OF PROGRESS BUT

. these approximations are not enough to allow calculations for large systems

e Conventional matrix diagonalisation

— too slow for a large, well converged,

basis set
— calculates too many (unoccupied)
states
] PN e The unoccupied states do not

contribute to the total energy, so why
calculate them?

Ferrierite



CALCULATING THE

1. Eigenvalue term o
2. Potential term

3. lon-ion term ®

To get eigenvalues we use:

H;) = €|vq)
H = —%VQ + V(r) °

TOTAL ENERGY

Most stable computational approach
is to directly minimise the total energy

Do not solve H|y;) = €;|1;) directly

Use iterative diagonalisation for just
the states that we need

We still need to operate H on [1;)



OPERATING WITH H ON |;)

e H divides into two parts e The potential V(r) can be evaluated
: : . in real space
— The potential — diagonal in real P
space
reciprocal space %|k + G|? if we use a plane wave basis

set (more on this later)

e Could use FFTs (Fast Fourier
Transforms) and evaluate each term e Different basis sets suggest different
In appropriate space strategies



EVALUATING THE ENERGY

e The eigenvalue sum: o Fion_ion converges slowly in both real
and reciprocal space so use the Ewald

& = (i H|ips) identity
e Potential energy — product of splits the sum between two spaces

— the sum of the terms converges

potential with density, then integrate : _
rapidly

Epot = [ V(r)n(r)dr



ITERATIVE DIAGONALISATION

e Need energy gradient for each band 7 e Enforce orthogonality via the gradient:

and iteration m:
05 = n) = >0, (ilni) 1vy)
ni") = —(H — ") |[¥")

;" = (V" H[y")
Z Z Z e Orthogonalisation is costly and

e Antisymmetry of wavefunctions —  dominates in the limit of a very large
orthogonality of bands at each k-point  system



MINIMISATION

e Steepest descents — safe, but very
slow
e Conjugate gradients — use history

to ensure independence (exact for
quadratic functions)

e Preconditioning — to encourage all
components of the wavefunction to
converge at comparable rates




