ELECTRONIC STRUCTURE METHODOLOGY 2

Chris J. Pickard

Lecture Three

THE KOHN-SHAM EQUATIONS

$$E_{\text{tot}}[\{\psi_i\}] = -2\sum_i \frac{\hbar^2}{2m} \int \psi_i \nabla^2 \psi_i d\mathbf{r}$$
$$+ \int V_{\text{ion}}(\mathbf{r}) n(\mathbf{r}) d\mathbf{r}$$
$$+ \frac{e^2}{2} \int \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r} d\mathbf{r}'$$
$$+ E_{\text{xc}}[n(\mathbf{r})] + E_{\text{ion}}(\mathbf{R}_i)$$

The charge density is written as:

 $n(\mathbf{r}) = 2\sum_{i} |\psi_i(\mathbf{r})|^2$

The potentials are given by *functional* derivatives:

$$V_{\rm xc}({f r}) = rac{\delta E_{
m xc}[n({f r})]}{\delta n({f r})}$$
 etc.

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V_{\text{ion}}(\mathbf{r}) + V_{\text{H}}(\mathbf{r}) + V_{\text{xc}}(\mathbf{r})\right]\psi_i(\mathbf{r}) = \epsilon_i\psi_i(\mathbf{r})$$

CORE AND VALENCE ELECTRONS

• Core electrons don't take part in bonding (definition!)

Level	Energy(Ry)	Occupation
1s	-19.90408	2.000
2s	-1.00279	2.000
2p	-0.39838	2.000

• To avoid calculating the properties of the (possibly many) core electrons we can invent *pseudopotentials*

THE PSEUDOPOTENTIAL APPROACH

- The pseudopotential was originally thought of as the weaker effective potential due to the orthogonality of the valence to the core wavefunctions
- This concept provided a justification and theoretical framework for the nearly free electron approximation
- The true power of the method unleashed by much later *ab initio* formulations

THE PSEUDOPOTENTIAL SCHEME

- Do an all electron atomic calculation
- Choose a core radius, and *pseudise* the atomic wavefunctions in the channels of interest
- The simplest schemes conserve the *norm* but this can be relaxed
- Invert the Schrödinger equation to find the *pseudopotential*

The Pseudopotential Scheme

- The resulting pseudopotential will reproduce the *reference* eigenstates by construction, and is nonlocal in general
- *Transferability* is of great importance

 the potentials should be tested extensively
- There may be *ghost states*

IT WORKS!

Material	Expt	Theory	Delta	Туре
LaBi	6.57	6.648	1.2%	alloy
CaF_2	5.4626	5.496	0.6%	halide
Ag	4.086	4.112	0.6%	metal
V	3.028	3.019	-0.3%	metal
ZrN	4.62	4.634	0.3%	misc
NbO	4.2103	4.2344	0.6%	oxide
GaAs	5.653	5.663	0.2%	semiconductor
$CoSi_2$	5.36	5.3	-1.1%	silicide

A REMINDER

- We got all this from
 - Schrödinger's Equation
 - Density functional theory
 - a many-body uniform electron gas
 - some clever approximations

Milman, Winkler, White, Pickard, Payne, Akhmatskaya, and Nobes. Electronic structure, properties and phase stability of inorganic crystals: The pseudopotential plane-wave approach.

International Journal of Quantum Chemistry, 77:895-910, 2000.

WE MADE LOTS OF PROGRESS BUT ...

. . . these approximations are not enough to allow calculations for large systems

Ferrierite

- Conventional matrix diagonalisation
 - too slow for a large, well converged, basis set
 - calculates too many (unoccupied) states
- The unoccupied states do not contribute to the total energy, so why calculate them?

CALCULATING THE TOTAL ENERGY

- 1. Eigenvalue term
- 2. Potential term
- 3. Ion-ion term
- To get eigenvalues we use:

$$H|\psi_i\rangle = \epsilon_i |\psi_i\rangle$$
$$H = -\frac{1}{2}\nabla^2 + V(\mathbf{r})$$

- Most stable computational approach is to directly minimise the total energy
- Do not solve $H|\psi_i\rangle = \epsilon_i |\psi_i\rangle$ directly
- Use iterative diagonalisation for just the states that we need
- We still need to operate H on $|\psi_i\rangle$

Operating with H on $|\psi_i angle$

• H divides into two parts - The potential — diagonal in real • The potential $V(\mathbf{r})$ can be evaluated in real space

space

- The kinetic energy diagonal in Kinetic energy in reciprocal space reciprocal space $\frac{1}{2}|\mathbf{k} + \mathbf{G}|^2$ if we use a plane wave basis set (more on this later)
- Could use FFTs (Fast Fourier Transforms) and evaluate each term
 Different basis sets suggest different in appropriate space
 Strategies

EVALUATING THE ENERGY

• The eigenvalue sum:

 $\epsilon_i = \langle \psi_i | H | \psi_i \rangle$

• Potential energy — product of potential with density, then integrate :

 $E_{\rm pot} = \int V(\mathbf{r}) n(\mathbf{r}) d\mathbf{r}$

- $E_{\text{ion-ion}}$ converges slowly in both real and reciprocal space so use the Ewald identity
 - splits the sum between two spaces
 - the sum of the terms converges rapidly

ITERATIVE DIAGONALISATION

Need energy gradient for each band i

 Enforce orthogonality via the gradient:
 and iteration m:

 $\epsilon_i^m = \langle \psi_i^m | H | \psi_i^m \rangle$

- Antisymmetry of wavefunctions → orthogonality of bands at each k-point
- Orthogonalisation is costly and dominates in the limit of a very large system

MINIMISATION

- Steepest descents safe, but very slow
- Conjugate gradients use history to ensure independence (exact for quadratic functions)
- Preconditioning to encourage all components of the wavefunction to converge at comparable rates