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The Kohn-Sham Equations
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The charge density is written as:

n(r) = 2
∑

i |ψi(r)|
2

The potentials are given by functional

derivatives:

Vxc(r) = δExc[n(r)]
δn(r) etc.

[− h̄2

2m
∇2 + Vion(r) + VH(r) + Vxc(r)]ψi(r) = εiψi(r)



Core and Valence electrons
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• Core electrons don’t take part in
bonding (definition!)

Level Energy(Ry) Occupation
1s -19.90408 2.000
2s -1.00279 2.000
2p -0.39838 2.000

• To avoid calculating the properties of
the (possibly many) core electrons we
can invent pseudopotentials



The Pseudopotential Approach
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• The pseudopotential was originally
thought of as the weaker effective
potential due to the orthogonality of
the valence to the core wavefunctions

• This concept provided a justification
and theoretical framework for the
nearly free electron approximation

• The true power of the method
unleashed by much later ab initio

formulations



The Pseudopotential Scheme
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• Do an all electron atomic calculation

• Choose a core radius, and pseudise

the atomic wavefunctions in the
channels of interest

• The simplest schemes conserve the
norm but this can be relaxed

• Invert the Schrödinger equation to
find the pseudopotential



The Pseudopotential Scheme
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• The resulting pseudopotential will
reproduce the reference eigenstates
by construction, and is nonlocal in
general

• Transferability is of great importance
– the potentials should be tested
extensively

• There may be ghost states



It Works!

Material Expt Theory Delta Type
LaBi 6.57 6.648 1.2% alloy
CaF2 5.4626 5.496 0.6% halide
Ag 4.086 4.112 0.6% metal
V 3.028 3.019 -0.3% metal
ZrN 4.62 4.634 0.3% misc
NbO 4.2103 4.2344 0.6% oxide
GaAs 5.653 5.663 0.2% semiconductor
CoSi2 5.36 5.3 -1.1% silicide



A reminder
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A comparison of theory with experiment
A large selection of inorganic crystals

• We got all this from

– Schrödinger’s Equation
– Density functional theory
– a many-body uniform electron gas
– some clever approximations

Milman, Winkler, White, Pickard, Payne, Akhmatskaya, and Nobes.

Electronic structure, properties and phase stability of inorganic crystals:

The pseudopotential plane-wave approach.

International Journal of Quantum Chemistry, 77:895-910, 2000.



We made lots of progress but . . .

. . . these approximations are not enough to allow calculations for large systems

Ferrierite

• Conventional matrix diagonalisation

– too slow for a large, well converged,
basis set

– calculates too many (unoccupied)
states

• The unoccupied states do not
contribute to the total energy, so why
calculate them?



Calculating the total energy

1. Eigenvalue term

2. Potential term

3. Ion-ion term

To get eigenvalues we use:

H|ψi〉 = εi|ψi〉

H = −1
2∇

2 + V (r)

• Most stable computational approach
is to directly minimise the total energy

• Do not solve H|ψi〉 = εi|ψi〉 directly

• Use iterative diagonalisation for just
the states that we need

• We still need to operate H on |ψi〉



Operating with H on |ψi〉

• H divides into two parts

– The potential — diagonal in real
space

– The kinetic energy — diagonal in
reciprocal space

• Could use FFTs (Fast Fourier
Transforms) and evaluate each term
in appropriate space

• The potential V (r) can be evaluated
in real space

• Kinetic energy in reciprocal space —
1
2|k + G|2 if we use a plane wave basis
set (more on this later)

• Different basis sets suggest different
strategies



Evaluating the Energy

• The eigenvalue sum:

εi = 〈ψi|H|ψi〉

• Potential energy — product of
potential with density, then integrate :

Epot =
∫
V (r)n(r)dr

• Eion−ion converges slowly in both real
and reciprocal space so use the Ewald
identity

– splits the sum between two spaces
– the sum of the terms converges

rapidly



Iterative Diagonalisation

• Need energy gradient for each band i
and iteration m:

|ηm
i 〉 = −(H − εmi )|ψm

i 〉

εmi = 〈ψm
i |H|ψm

i 〉

• Antisymmetry of wavefunctions →
orthogonality of bands at each k-point

• Enforce orthogonality via the gradient:

|η′
m
i 〉 = |ηm

i 〉 −
∑

j 〈ψj|η
m
i 〉|ψj〉

• Orthogonalisation is costly and
dominates in the limit of a very large
system



Minimisation

• Steepest descents — safe, but very
slow

• Conjugate gradients — use history
to ensure independence (exact for
quadratic functions)

• Preconditioning — to encourage all
components of the wavefunction to
converge at comparable rates


