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Total Energy Calculations
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Cell Parameter

• Many properties depend on the total
energy of a system

– equilibrium lattice constants
(density)

– bulk moduli
– phonons
– elastic constants
– phase transitions
– chemistry, bonding etc.



The Quantum World

Diamond

• Most low energy physics, chemistry
and biology can be explained by the
Quantum Mechanics of electrons and
ions.

• In nearly all cases, treating the
electrons as quantum mechanical
alone is enough.



The Quantum Nightmare
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• The red term describes correlation and
is very difficult to account for

• The Hamiltonian can be generalised:

H = T + V + U

where U is the mutual interaction
energy of the electrons and V =
∑N

i=1 v(ri), the interaction with an
arbitary external field.



Total Energy as a Functional of the Density

A Functional is a function of a function, e.g.:

A[f(r)] =
∫

f(r)2dr

• For a given external potential v(r)
the many-body wavefunction is Ψ,
the ground-state energy is:

Eg = 〈Ψ|H0 + V |Ψ〉

• The electron density is:

n(r) = 〈Ψ|n̂(r)|Ψ〉

with the density operator defined as:

n̂(r) =
∑N

i=1 δ(r− ri)



Density Functional Theory: The Two Theorems

Theorem 1: Two different
potentials cannot give rise to the
same ground-state density n(r).

Corollary: n(r) uniquely
determines the external potential
v(r) and therefore the many-body
wavefunction Ψ.

Theorem 2: The ground-state
energy for a fixed v(r) is given by
minimising Eg[n(r)] with respect
to n(r). The n(r) that gives the
minimum energy is the ground-
state density.



Perturbation Theory

• If we know the wavefunctions and energies for a given Hamiltonian H0|ψ
0
n〉 =

E0
n|ψ

0
n〉 we can say something about similar Hamiltonians H = H0 + αH1

• The wavefunctions of this new Hamiltonian H can be expanded:
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• Also expanding the energy En in powers of α we obtain:
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The First Order Energy Shift
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• Comparing terms in α we arrive at the expression:
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• If we take the scalar product with 〈ψ0
n|, and use the orthonormality relation

〈ψ0
n|ψ

0
k〉 = δnk we get an expression for the first order shift in the energy:
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The Second Order Energy Shift
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• Comparing terms in α2 we arrive at the expression:
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• Expressions can also be found for the first, second etc, order changes to the
wavefunctions



Proof of Theorem 1

Theorem 1 is an expression of the convexity of the ground-state
energy as a function of external potential, v(λ; r)

Eg(λ)

Eg(0)(1−λ) (1)g−λ E

Eg

10 λ

• Convexity follows from 2nd order
perturbation theory:

d2Eg

dλ2 = 2
∑

n6=0
|〈Ψ0(λ)|∆V |Ψn(λ)〉|2

E0(λ)−En(λ)
< 0

Ψ0(λ) and Ψn(λ) are the ground
and nth excited states, and ∆V =
v(1; r) − v(0; r)



Proof of Theorem 1 continued

Theorem 1 is equivalent to stating that a change of external
potential ∆v(r) must lead to a change of density ∆n(r)

• First order perturbation theory
implies:

dEg
dλ

= 〈Ψ0|∆V |Ψ0〉

• Convexity demands that
dEg
dλ

at λ = 0
is greater than at λ = 1.

• This implies that:

∫

dr∆v(r)n(1; r) <
∫

dr∆v(r)n(0; r)

• Hence:

∫

dr∆v(r)∆n(r) < 0 and so ∆n(r)
cannot be zero, proving Theorem 1.



Theorem 2: The Variational Principle

• As the ground-state energy Eg is
uniquely specified by n(r) it can be
written as a functional Eg[n(r)]

• We can explicitly separate out the
term due to the external potential:

Eg[n(r)] =
∫

drv(r)n(r) + F [n(r)]

• F [n(r)] is the ground-state
expectation value of H0 when the
density is n(r)

Theorem 2 (or the variational theorem) The ground-state energy
for a fixed v(r) is given by minimising Eg[n(r)] with respect to
n(r). The n(r) that gives the minimum energy is the ground-state
density.



Theorem 2: The Proof

Proof: The potentials v(r) and v′(r) are two different external potentials. The
corresponding ground-state energies are Eg and E′

g, and the ground-state many-
body wavefunctions are Ψ and Ψ′.

By the Rayleigh-Ritz variational principle:

Eg < 〈Ψ′|H0 + V |Ψ′〉 =
∫

drv(r)n′(r) + F [n′(r)]

The density due to Ψ′ is n′(r)

If we assume that the ground-state is non-degenerate, this proves Theorem 2.



The Exchange and Correlation Energy

• The total energy can be split into
three parts:

Etot =
∫

drv(r)n(r) + F [n]

F [n] = T [n] +G[n]

T [n] is the kinetic energy of non-
interacting electrons with a density
distribution of n(r)

• We can also separate out the Hartree
energy:

EH[n(r)] = 1
2e

2
∫

drdr′
n(r)n(r′)
|r−r′|

• The exchange-correlation energy
Exc[n] is defined as what is left:

Etot =
∫

drv(r)n(r)+T [n]+EH[n]+
Exc[n]

This is all exact. If we knew what Exc[n] was we could calculate the
exact ground-state energy for any system! But, sadly, we don’t ...



The Local Density Approximation

• If we are to make any progress we
must guess a form for Exc

• We do know the Exc very
accurately (via Quantum Monte Carlo
calculations) for jellium (the uniform
electron gas).

• We know the exchange-correlation
energy per electron εxc(n) for a range
of n

• The Local Density Approximation
(LDA) is the follows:

Approximate the xc energy of an
electron at point r to be εxc(n(r)),
the value for jellium using the density
n(r) for point r.

ELDA
xc =

∫

drn(r)εxc(n(r))

This works very well for the structural properties of many solids.



Other Density Functionals

• Why does the LDA work so well?
There are some justifications (based
on the known properties of the
electron gas), but mainly it just works.

• LDA is not that good for total energy
differences, barrier heights etc. Can
we do better?

• The LDA only considers the value
of the density at a point — we
could consider its gradients. This

leads to the Generalised Gradient
Approximations (GGAs)

• GGAs are better for energy differences
(so more useful to chemists), and
for the structural properties of heavy
elements

• There are ab initio GGAs such
as: PW91, PBE, rPBE and hybrid
functionals: B3LYP and many others


