# DENSITY FUNCTIONAL THEORY AND THE TOTAL ENERGY METHOD

Chris J. Pickard

Lecture One

# TOTAL ENERGY CALCULATIONS



# THE QUANTUM WORLD



Diamond

- Most low energy physics, chemistry and biology can be explained by the Quantum Mechanics of electrons and ions.
- In nearly all cases, treating the electrons as quantum mechanical alone is enough.

#### THE QUANTUM NIGHTMARE



- The red term describes correlation and is very difficult to account for
- The Hamiltonian can be generalised:

$$H = T + V + U$$

where U is the mutual interaction energy of the electrons and  $V = \sum_{i=1}^{N} v(\mathbf{r}_i)$ , the interaction with an arbitary external field.

# TOTAL ENERGY AS A FUNCTIONAL OF THE DENSITY

A Functional is a function of a function, e.g.:  $A[f(\mathbf{r})] = \int f(\mathbf{r})^2 d\mathbf{r}$ 

• For a given external potential  $v(\mathbf{r})$  • The electron density is: the many-body wavefunction is  $\Psi$ , the ground-state energy is:  $n(\mathbf{r}) = \langle \Psi | \hat{n}(\mathbf{r}) | \Psi \rangle$ 

$$E_g = \langle \Psi | H_0 + V | \Psi \rangle$$

with the *density operator* defined as:

$$\hat{n}(\mathbf{r}) = \sum_{i=1}^{N} \delta(\mathbf{r} - \mathbf{r}_i)$$

## DENSITY FUNCTIONAL THEORY: THE TWO THEOREMS

**Theorem 1:** Two different potentials cannot give rise to the same ground-state density  $n(\mathbf{r})$ .

**Corollary:**  $n(\mathbf{r})$  uniquely determines the external potential  $v(\mathbf{r})$  and therefore the many-body wavefunction  $\Psi$ . **Theorem 2:** The ground-state energy for a fixed  $v(\mathbf{r})$  is given by minimising  $E_g[n(\mathbf{r})]$  with respect to  $n(\mathbf{r})$ . The  $n(\mathbf{r})$  that gives the minimum energy is the groundstate density.

# PERTURBATION THEORY

- If we know the wavefunctions and energies for a given Hamiltonian  $H_0 |\psi_n^0\rangle = E_n^0 |\psi_n^0\rangle$  we can say something about similar Hamiltonians  $H = H_0 + \alpha H_1$
- The wavefunctions of this new Hamiltonian H can be expanded:

$$|\psi_n\rangle = |\psi_n^0\rangle + \sum_{k \neq n} \alpha C_{nk}^1 |\psi_k^0\rangle + \sum_{k \neq n} \alpha^2 C_{nk}^2 |\psi_k^0\rangle + \dots$$

• Also expanding the energy  $E_n$  in powers of  $\alpha$  we obtain:

 $(H_0 + \alpha H_1)[|\psi_n^0\rangle + \sum_{k \neq n} \alpha C_{nk}^1 |\psi_k^0\rangle + \dots] = (E_n^0 + \alpha E_n^1 + \dots)[|\psi_n^0\rangle + \sum_{k \neq n} \alpha C_{nk}^1 |\psi_k^0\rangle + \dots]$ 

#### THE FIRST ORDER ENERGY SHIFT

$$(H_0 + \alpha H_1)[|\psi_n^0\rangle + \sum_{k \neq n} \alpha C_{nk}^1 |\psi_k^0\rangle + \dots] = (E_n^0 + \alpha E_n^1 + \dots)[|\psi_n^0\rangle + \sum_{k \neq n} \alpha C_{nk}^1 |\psi_k^0\rangle + \dots]$$

• Comparing terms in  $\alpha$  we arrive at the expression:

$$H_1|\psi_n^0\rangle + \sum_{k \neq n} E_k^0 C_{nk}^1 |\psi_k^0\rangle = \sum_{k \neq n} E_n^0 C_{nk}^1 |\psi_k^0\rangle + E_n^1 |\psi_n^0\rangle$$

• If we take the scalar product with  $\langle \psi_n^0 |$ , and use the orthonormality relation  $\langle \psi_n^0 | \psi_k^0 \rangle = \delta_{nk}$  we get an expression for the first order shift in the energy:

$$\alpha E_n^1 = \langle \psi_n^0 | \alpha H_1 | \psi_n^0 \rangle$$

## THE SECOND ORDER ENERGY SHIFT

$$(H_0 + \alpha H_1)[|\psi_n^0\rangle + \sum_{k \neq n} \alpha C_{nk}^1 |\psi_k^0\rangle + \dots] = (E_n^0 + \alpha E_n^1 + \dots)[|\psi_n^0\rangle + \sum_{k \neq n} \alpha C_{nk}^1 |\psi_k^0\rangle + \dots]$$

• Comparing terms in  $\alpha^2$  we arrive at the expression:

$$E_n^2 = \sum_{k \neq n} \frac{\langle \psi_n^0 | H_1 | \psi_k^0 \rangle \langle \psi_k^0 | H_1 | \psi_n^0 \rangle}{E_n^0 - E_k^0} = \sum_{k \neq n} \frac{|\langle \psi_n^0 | H_1 | \psi_k^0 \rangle|^2}{E_n^0 - E_k^0}$$

• Expressions can also be found for the first, second etc, order changes to the wavefunctions

# Proof of Theorem 1

Theorem 1 is an expression of the *convexity* of the ground-state energy as a function of external potential,  $v(\lambda; \mathbf{r})$ 



• Convexity follows from 2<sup>nd</sup> order perturbation theory:

$$\frac{d^2 E_g}{d\lambda^2} = 2 \sum_{n \neq 0} \frac{|\langle \Psi_0(\lambda) | \Delta V | \Psi_n(\lambda) \rangle|^2}{E_0(\lambda) - E_n(\lambda)} < 0$$

 $\Psi_0(\lambda)$  and  $\Psi_n(\lambda)$  are the ground and  $n^{\text{th}}$  excited states, and  $\Delta V = v(1; \mathbf{r}) - v(0; \mathbf{r})$ 

# Proof of Theorem 1 continued

Theorem 1 is equivalent to stating that a change of external potential  $\Delta v(\mathbf{r})$  must lead to a change of density  $\Delta n(\mathbf{r})$ 

First order perturbation theory 
 This implies that:

$$\frac{dE_g}{d\lambda} = \langle \Psi_0 | \Delta V | \Psi_0 \rangle$$

 $\int d\mathbf{r} \Delta v(\mathbf{r}) n(1;\mathbf{r}) < \int d\mathbf{r} \Delta v(\mathbf{r}) n(0;\mathbf{r})$ 

• Hence:

• Convexity demands that  $\frac{dE_g}{d\lambda}$  at  $\lambda = 0$   $\int d\mathbf{r} \Delta v(\mathbf{r}) \Delta n(\mathbf{r}) < 0$  and so  $\Delta n(\mathbf{r})$  is greater than at  $\lambda = 1$ . cannot be zero, proving Theorem 1.

#### THEOREM 2: THE VARIATIONAL PRINCIPLE

- As the ground-state energy  $E_g$  is  $E_q[n(\mathbf{r})] = \int d\mathbf{r} v(\mathbf{r}) n(\mathbf{r}) + F[n(\mathbf{r})]$ uniquely specified by  $n(\mathbf{r})$  it can be written as a functional  $E_q[n(\mathbf{r})]$
- We can explicitly separate out the term due to the external potential:

•  $F[n(\mathbf{r})]$  is the ground-state expectation value of  $H_0$  when the density is  $n(\mathbf{r})$ 

**Theorem 2** (or the *variational theorem*) The ground-state energy for a fixed  $v(\mathbf{r})$  is given by minimising  $E_q[n(\mathbf{r})]$  with respect to  $n(\mathbf{r})$ . The  $n(\mathbf{r})$  that gives the minimum energy is the ground-state density.

# THEOREM 2: THE PROOF

**Proof:** The potentials  $v(\mathbf{r})$  and  $v'(\mathbf{r})$  are two different external potentials. The corresponding ground-state energies are  $E_g$  and  $E'_g$ , and the ground-state many-body wavefunctions are  $\Psi$  and  $\Psi'$ .

By the Rayleigh-Ritz variational principle:

$$E_g < \langle \Psi' | H_0 + V | \Psi' \rangle = \int d\mathbf{r} v(\mathbf{r}) n'(\mathbf{r}) + F[n'(\mathbf{r})]$$

The density due to  $\Psi'$  is  $n'(\mathbf{r})$ 

If we assume that the ground-state is non-degenerate, this proves Theorem 2.

#### THE EXCHANGE AND CORRELATION ENERGY

• The total energy can be split into • We can also separate out the Hartree three parts: energy:

$$E_{\text{tot}} = \int d\mathbf{r} v(\mathbf{r}) n(\mathbf{r}) + F[n]$$

$$F[n] = T[n] + G[n]$$

T[n] is the kinetic energy of non-interacting electrons with a density distribution of  $n({\bf r})$ 

$$E_{\mathrm{H}}[n(\mathbf{r})] = \frac{1}{2}e^2 \int d\mathbf{r} d\mathbf{r}' \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}$$

• The exchange-correlation energy  $E_{\rm xc}[n]$  is defined as what is left:

$$\begin{split} E_{\rm tot} &= \int d\mathbf{r} v(\mathbf{r}) n(\mathbf{r}) + T[n] + E_{\rm H}[n] + \\ E_{\rm xc}[n] \end{split}$$

This is all exact. If we knew what  $E_{\rm xc}[n]$  was we could calculate the exact ground-state energy for any system! But, sadly, we don't ...

#### THE LOCAL DENSITY APPROXIMATION

- If we are to make any progress we The Local Density Approximation must guess a form for  $E_{xc}$  (LDA) is the follows:
- We do know the E<sub>xc</sub> very accurately (via Quantum Monte Carlo calculations) for jellium (the uniform electron gas).

Approximate the xc energy of an electron at point r to be  $\varepsilon_{\rm xc}(n({\bf r}))$ , the value for jellium using the density  $n({\bf r})$  for point r.

• We know the exchange-correlation energy per electron  $\varepsilon_{\rm xc}(n)$  for a range of n

$$E_{\rm xc}^{\rm LDA} = \int d\mathbf{r} n(\mathbf{r}) \varepsilon_{\rm xc}(n(\mathbf{r}))$$

This works very well for the structural properties of many solids.

#### OTHER DENSITY FUNCTIONALS

- Why does the LDA work so well? There are some justifications (based on the known properties of the electron gas), but mainly it just works.
- LDA is not that good for total energy differences, barrier heights etc. Can we do better?

leads to the Generalised Gradient Approximations (GGAs)

- GGAs are better for energy differences (so more useful to chemists), and for the structural properties of heavy elements
- The LDA only considers the value There are *ab initio* GGAs such of the density at a point we as: PW91, PBE, rPBE and hybrid could consider its gradients. This functionals: B3LYP and many others