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ToTrAL ENERGY CALCULATIONS
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Many properties depend on the total
energy of a system

— equilibrium lattice constants
(density)

— bulk moduli

— phonons

— elastic constants

— phase transitions

— chemistry, bonding etc.



THE QUANTUM WORLD

e Most low energy physics, chemistry
and biology can be explained by the
Quantum Mechanics of electrons and
lons.

e In nearly all cases, treating the
electrons as quantum mechanical
alone is enough.
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THE QUANTUM NIGHTMARE

e The red term describes correlation and
is very difficult to account for
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TOoTAL ENERGY AS A FUNCTIONAL OF THE DENSITY

A Functional is a function of a function, e.g.:

A[f(r)) = [ f(x)%dr

e For a given external potential v(r)e The electron density is:
the many-body wavefunction is W,
the ground-state energy is: n(r)

= (¥|a(r)|)
E, = (V|Hy+ V|¥) with the density operator defined as:

Ar) =i, 6(r —ry)



DENSITY FUNCTIONAL THEORY: THE TwO THEOREMS

Theorem 1: Two different
potentials cannot give rise to the
same ground-state density n(r).

Corollary: n(r) uniquely
determines the external potential
v(r) and therefore the many-body
wavefunction W.

Theorem 2: The ground-state
energy for a fixed v(r) is given by
minimising E,[n(r)] with respect
to n(r). The n(r) that gives the
minimum energy is the ground-
state density.




PERTURBATION THEORY

e If we know the wavefunctions and energies for a given Hamiltonian Ho|y?) =
EQ[40) we can say something about similar Hamiltonians H = Hy + o H;

e The wavefunctions of this new Hamiltonian H can be expanded:

Vn) = Wg) + Z/@sn OZC%/{W/% + Zk;én QQCik\@bg} 4+ ...

e Also expanding the energy F,, in powers of o we obtain:

(Ho + aHy)[|[vn) + > g aChilig) + .. ]
= (Ey + aBL + . )[[99) + Xy @Cpp 00y + .. ]



THE FIRST ORDER ENERGY SHIFT

(Ho + aH)[[¥n) + 3 jn @Ciltg) +
= (Ep + B, + .. )[|dn) + 3 aCr ) + . ]

e Comparing terms in o we arrive at the expression:
Hiln) + 2 hn BRCo10R) = D EnCrhiln) + EL100)

e If we take the scalar product with ()%|, and use the orthonormality relation
(P2 |pY) = 0,1 we get an expression for the first order shift in the energy:

aly, = (nlaH|yy)



THE SECOND ORDER ENERGY SHIFT

(Ho + aHy)[|vn) + 350 @Crplibp) + - ]
= (Ep +aE, + .. )dn) + 3 aCrplp) + .. ]

2

e Comparing terms in a® we arrive at the expression:

(Yl H1lvp) (Ypl Haltp) (v IH |w )|
Zk;én : k E% . Zk;én : k

e Expressions can also be found for the first, second etc, order changes to the
wavefunctions



PROOF OF THEOREM 1

Theorem 1 is an expression of the convexity of the ground-state
energy as a function of external potential, v(\;r)

o Convexity follows from 2°d order
perturbation theory:

d*Ey _ (TN AV T, (M)
el _02271#0 OEo(A)—En(M
<

Wo(A) and W,(N\) are the ground
and n'" excited states, and AV =
v(1l;r) —v(0;r)
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PROOF OF THEOREM 1 CONTINUED

Theorem 1 is equivalent to stating that a change of external
potential Av(r) must lead to a change of density An(r)

e First order perturbation theory e This implies that:
implies:
iF [ drAv(r)n(1;r) < [ drAv(r)n(0;r)
2 = (Yol AV W)
e Hence:

e Convexity demands that % at A\=0 [drAv(r)An(r) < 0 and so An(r)
is greater than at A = 1. cannot be zero, proving Theorem 1.



THEOREM 2: THE VARIATIONAL PRINCIPLE

e As the ground—state energy Eg IS Eg['n,(r)] — fdrv(r)n(r) —|—F[n(r)]
uniquely specified by n(r) it can be

written as a functional E,[n(r)]
e 'ln(r)] is the  ground-state

e We can explicitly separate out the expectation value of Hy when the
term due to the external potential: density is n(r)

Theorem 2 (or the variational theorem) The ground-state energy
for a fixed v(r) is given by minimising E,[n(r)] with respect to
n(r). The n(r) that gives the minimum energy is the ground-state
density.




THEOREM 2: THE PROOF

Proof: The potentials v(r) and v’(r) are two different external potentials. The
corresponding ground-state energies are £, and E;, and the ground-state many-
body wavefunctions are ¥ and V',

By the Rayleigh-Ritz variational principle:

E, < (V'|Hy+ V|V') = [dru(r)n'(r) + F[n/(r)]

The density due to ¥’ is n/(r)

If we assume that the ground-state is non-degenerate, this proves Theorem 2.



THE EXCHANGE AND CORRELATION ENERGY

e The total energy can be split into e We can also separate out the Hartree

three parts: energy:
Fuow = [ dro(e)n(x) + Fln Biafn(r)] = 3¢ [ drar’ (0242
Fln] =Tln] + Gln| e The exchange-correlation energy

FEyc[n] is defined as what is left:
T[n| is the kinetic energy of non-

interacting electrons with a density p . = [drv(r)n(r)+T[n]+ Euln]+
distribution of n(r) Eyo[n]

This is all exact. If we knew what E.[n| was we could calculate the
exact ground-state energy for any system! But, sadly, we don't ...




e We do

THE LOCAL DENSITY APPROXIMATION

e |If we are to make any progress we e The Local

must guess a form for E.

know the FEy. very
accurately (via Quantum Monte Carlo
calculations) for jellium (the uniform
electron gas).

We know the exchange-correlation
energy per electron e.(n) for a range
of n

Density Approximation
(LDA) is the follows:

Approximate the xc energy of an
electron at point r to be ey.(n(r)),
the value for jellium using the density
n(r) for point r.

By = [drn(r)exc(n(r))

This works very well for the structural properties of many solids.




OTHER DENSITY FUNCTIONALS

e Why does the LDA work so well? leads to the Generalised Gradient
There are some justifications (based Approximations (GGAs)
on the known properties of the

electron gas), but mainly it just works. | GGAs are better for energy differences

(so more useful to chemists), and
for the structural properties of heavy
elements

e LDA is not that good for total energy
differences, barrier heights etc. Can
we do better?

e The LDA only considers the valuee There are ab initio GGAs such
of the density at a point — we as: PWO91, PBE, rPBE and hybrid
could consider its gradients. This functionals: B3LYP and many others



