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THEORETICAL PHYSICS I

Attempt all 4 questions. The approximate number of marks allotted
to each part of a question is indicated in the right margin. The
paper contains 11 sides, including this one.

You may not start to read the questions
printed on the subsequent pages of this
question paper until instructed that you

may do so by the Invigilator.
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1 An end O of a massless rod of length b is fixed, allowing the rod to swing by
an angle η in the vertical x− z plane, as shown in the figure below. The other end
of the rod is connected to a support by a spring of force constant k. The spring is
sufficiently long that it can be considered to remain vertical at all times. At the
natural spring length, the rod makes an angle η0 with the x axis. The rod is
connected, at a distance a from O, to one end of a second massless rod of length l
that is allowed to swing freely, making an angle θ with the vertical. A bob with a
mass m is attached to the free end of the second rod.
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(a) Show that the lagrangian of the system is given by

L =
1

2
m

[
a2η̇2 − 2al sin(η + θ)η̇θ̇ + l2θ̇2

]
+ mg(l cos θ + a sin η)− 1

2
b2k(sin η − sin η0)

2.

[6]

[Partly seen] In x, y coordinates the lagrangian reads

L =
1

2
m(ẋ2 + ż2)−mgz − 1

2
k∆2

where the bob’s coordinates are

x = a cos(η) + l sin(θ), z = −l cos(θ)− a sin(η)

Hence the kinetic part of the lagrangian is

T =
1

2
m

[
a2η̇2 − 2al sin(η + θ)η̇θ̇ + l2θ̇2

]
while the rest is given by

mg(l cos(θ) + a sin(η))− 1

2
b2k(sin(η)− sin(η0))

2
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(b) Find the Euler-Lagrange equations of motion. [6]

[Partly seen] The Euler-Lagrange equations read (d/dt)(∂L/∂q̇i) = ∂L/∂qi. For
the θ angle the equation is

m
[
l2θ̈ − al sin(η + θ)η̈ − al cos(η + θ)η̇(η̇ + θ̇)

]
= −mgl sin(θ)−mla cos(η + θ)η̇θ̇

and for the η angle it is

m
[
a2η̈ − al sin(η + θ)θ̈ − al cos(η + θ)θ̇(η̇ + θ̇)

]
= cos(η)(mga− b2k(sin(η)− sin(η0)))−mla cos(η + θ)η̇θ̇

(c) Assuming that the spring can freely intersect with the rods and the bob,
find all equilibrium positions of the system. [5]

[Unseen] In equilibrium the equations of motion become

0 = −mgl sin(θ)

0 = cos(η)(mga− b2k(sin(η)− sin(η0)))

which is solved by sin θ = 0, and cos(η) = 0 or sin(η) = sin(η0) +mga/b2k.

Hence, in equilibrium θ can take values 0 and π. At the same time for η we can

have η = ±π/2 , or η = arcsin(sin(η0) +mga/b2k), π − arcsin(sin(η0) +mga/b2k).

(d) Find the value of η0 so that the first rod has an equilibrium position with
η = 0 and find the values of the other constants for which such an equilibrium is
possible. [3]

[Unseen] We need to enforce the condition

mga− b2k(sin(0)− sin(η0)) = 0

which implies
sin(η0) = −mga/b2k.

Evidently this is only possible if mga/b2k ≤ 1.

(e) Consider an equilibrium position with θ = η = 0. By analysing small
fluctuations, determine whether the equilibrium is stable or unstable. [4]

[Partly seen] The linearized equations of motion read

ml2θ̈ = −mglθ

ma2η̈ = (mga− b2kη + b2k sin(η0)) = −b2kη,
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where in the last step we used the condition

sin(η0) = −mga/b2k.

The solution can be found in the form θ = Re θ0e
iωθ , η = Re η0e

iωη with

ω2
θ = g/l, ω2

η = (b2/a2)(k/m)

All frequencies are real, so it is a stable equilibrium.

(f) Discuss the time-dependence of the lagrangian and its implications for
the conserved quantities in this system. [1]

[Partly seen] The lagrangian contains no explicit time-dependence and therefore

the total energy, i.e. the Hamiltonian , has to be conserved.

2 (a) State Noether’s theorem for a complex scalar field ϕ whose dynamics is
described by a lagrangian density L and derive the form of the conserved current
Jµ. [4]

[Bookwork] According to Noether’s theorem, each continuous symmetry of a
lagrangian corresponds to a conserved current Jµ such that ∂µJµ = 0. For a complex
scalar field, the shift in the lagrangian density is given by

δL =
∂L
∂ϕ

δϕ+
∂L
∂ϕ∗ δϕ

∗ +
∂L

∂(∂µϕ)
(∂µδϕ) +

∂L
∂(∂µϕ∗)

(∂µδϕ
∗).

Applying the Euler-Lagrange equations ∂L/∂ϕ = ∂µ(∂L/∂(∂µϕ)) and
∂L/∂ϕ∗ = ∂µ(∂L/∂(∂µϕ∗)) we obtain

δL = ∂µ

[
∂L

∂(∂µϕ)
δϕ

]
+ ∂µ

[
∂L

∂(∂µϕ∗)
δϕ∗

]
so if δL = 0 we have a conserved current given by Jµ = ∂L

∂∂µϕ
δϕ+ ∂L

∂∂µϕ∗ δϕ∗. If instead δL
shifts by a total derivative, such that δL = ∂µK

µ, then the current shifts by

Jµ → Jµ −Kµ.

Consider the lagrangian density

L = ∂µϕ∂
µϕ∗ −m2ϕϕ∗ − ϵ(ϕ+ ϕ∗)2 − λ(ϕϕ∗)2.

(b) Assuming ϵ = 0, find a continuous symmetry transformation that acts on
ϕ but not on the spacetime coordinates and find the associated conserved current

A



5

Jµ. [3]

[Bookwork] For ϵ = 0, the given lagrangian density has a phase rotation
symmetry ϕ → eiαϕ, with a constant α. The corresponding conserved current can be
found by first computing the infinitesimal form of the symmetry transformation
ϕ → ϕ+ δϕ, ϕ∗ → ϕ+ δϕ∗ with δϕ = iαϕ, δϕ∗ = −iαϕ∗. The current can be found, up to
a constant overall factor as

Jµ =
∂L

∂(∂µϕ)
δϕ+

∂L
∂(∂µϕ∗)

δϕ∗ = iα(ϕ∂µϕ∗ − ϕ∗∂µϕ).

(c) Now assume ϵ ̸= 0. Does the previously identified transformation remain
a symmetry of the lagrangian density? If not, show how the lagrangian density
transforms under an infinitesimal version of the same transformation. Are there
any continuous or discrete symmetries that remain when ϵ ̸= 0? [3]

[Unseen] The symmetry considered in the previous part is not a symmetry any
more. Computing the lagrangian density variation explicitly we find

δL = −2ϵiα(ϕ2 − ϕ∗2).

There remains an unbroken discrete ϕ → −ϕ symmetry and we of course have Poincarè

invariance (namely the group of Lorentz transformations and spacetime translations).

(d) By modifying your derivation in (a), find how the continuity equation
∂µJ

µ = 0 changes when ϵ ̸= 0. [3]

[Partly seen] Computing the lagrangian density variation explicitly we find

δL = −2ϵiα(ϕ2 − ϕ∗2)

hence (taking account of the dropped constant in the definition of Jµ)

∂µJ
µ = −2ϵ(ϕ2 − ϕ∗2).

For the remainder of this question, assume that m2 < 0, ϵ < 0, and λ > 0.

(e) Use the parameterisation ϕ = a+ ib, where a, b are real scalar fields, to
find all possible values of ϕ where the system is in its ground state. [4]

[Partly seen] The potential reads

V = m2(a2 + b2) + 4ϵa2 + λ(a2 + b2)2.

The first derivatives of the potential read

V ′
a = 2a(m2 + 4ϵ+ 2λ(a2 + b2)) = 0

A
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V ′
b = 2b(m2 + 2λ(a2 + b2)) = 0

This has solutions for (a ̸= 0, b = 0), (a = 0, b ̸= 0), (a = 0, b = 0). (Note that
there are no solutions with (a ̸= 0, b ̸= 0).)

The case (a ̸= 0, b = 0) leads to a2 = −(m2 + 4ϵ)/(2λ).
The case (a = 0, b ̸= 0) leads to b2 = −(m2)/(2λ).

The two deepest extrema (and hence the minima of the potential) are at

b = 0, a = ±
√

−(m2 + 4ϵ)/(2λ) =⇒ ϕ = ±
√

−(m2 + 4ϵ)/(2λ). The degeneracy of the

two minima is the result of the unbroken discrete symmetry mentioned above.

(f) Use the parameterisation ϕ = (v + σ)eiθ to find the masses of the real
scalar fields σ and θ in the ground state ϕ = v by expanding L to quadratic order. [6]

[Unseen] The kinetic energy takes the form

T = ∂µϕ∂
µϕ∗ = ∂µσ∂

µσ + (v + σ)2∂µθ∂
µθ ≃ ∂µσ∂

µσ + v2∂µθ∂
µθ,

which we note is not canonically normalized. The potential takes the form

V = m2(v + σ)2 + 4ϵ(v + σ)2 cos2 θ + λ(v + σ)4

Expanding to quadratic order we get

V = (m2 + 4ϵ)σ2 + 4ϵv2(1− θ2/2)2 + λv2 + 6λv2σ2 = (m2 + 6λv2 + 4ϵ)σ2 − 4ϵv2θ2.

Taking into account the non-canonically normalized kinetic terms, we read off from the
terms quadratic in the fields that the mass-squareds are given by(

m2 + 6λ
−m2 − 4ϵ

2λ
+ 4ϵ

)
= (m2 + 3(−m2 − 4ϵ) + 4ϵ) = −2m2 − 8ϵ

(where in the second step we plugged in the value of v2 found earlier) and

−4ϵ,

so the masses may be written as
|2m2 + 8ϵ|1/2

and
|4ϵ|1/2.

(g) By considering |ϵ| ≪ |m2|, v2, comment on your results in view of
Goldstone’s theorem. [2]

[Unseen] For ϵ = 0 there would be an exact continuous symmetry and an

associated Goldstone boson, according to Goldstone’s theorem. If ϵ is non-zero but

small, the corresponding particle acquires a small mass.

A



7

3 (a) Briefly explain the concept of natural units. [2]

[Bookwork] Units such as ℏ and c are merely conversion factors between

historically distinct concepts of mass, length, time, etc . It is convenient to work in a

system of units in which ℏ = c = 1, leaving only a single dimensionful scale, which we

can take to be a mass. So energy has mass dimension one, time has mass dimension

minus one, etc. In particle physics, it’s usual to take the single dimensionful scale to be

an energy, measured in GeV.

The dynamics of a real vector field Aµ in 2 + 1 spacetime dimensions with
co-ordinates xν is described, in natural units, by the lagrangian density

L = −1

4
FµνF

µν + gϵµνλAµ∂νAλ.

Here Fµν = ∂µAν − ∂νAµ, ∂µ = ∂
∂xµ , ϵ

µνλ is a totally antisymmetric tensor with
ϵ012 = 1, g is a real constant, and all greek indices take values in {0, 1, 2}.

(b) Find the mass dimension of the constant g. [2]

[Unseen] The lagrangian density is the sum of two terms, each of which must

have the same mass dimension. Both terms contain the same power of the field Aµ, but

the second term has one fewer derivative. So [g] = [∂µ]. But [∂µ] = −[p/ℏ] = −[m/cℏ], so
g has dimensions of mass.

(c) Explain the concept of a gauge transformation and discuss whether or
not the action obtained from L is gauge invariant. [5]

[Mostly seen] A gauge transformation of the field Aµ is defined to be
Aµ → Aµ + ∂µf . We then have that Fµν is gauge invariant, so we need only examine the
second term in L. This shifts by

δL = ϵµνλ (∂µf∂νAλ +Aµ∂ν∂λf) .

Here the second term vanishes, because we have ϵµνλ∂ν∂λ = 0. The first term may be

written as ∂µ
[
ϵµνλf∂νAλ

]
, since again when the derivative acts on the second term in

the product we can use ϵµνλ∂µ∂ν = 0. Thus, the lagrangian density is not quite

invariant, but rather shifts by a total derivative and so the action shifts by a

contribution on the boundary. If the field Aµ and gauge parameter f vanish fast enough

as xµ → ∞, then we will indeed have gauge invariance.

(d) Starting from the Euler-Lagrange equations, derive the field equation

∂µF
µν + gϵνµρFµρ = 0.

A
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[4]

[Partly seen] Here, the derivation of the first term is standard. The
Euler-Lagrange equations read

∂µ
δL

δ∂µAν
− δL

δAν
= 0

and in δL
δ∂µAν

we get four contributions of −1
4F

µν to get −∂µF
µν in toto. The second

term has two contributions. For δL
δ∂µAν

, we get gϵρµνAρ, giving a piece

gϵρµν∂µAρ = gϵνρµ∂µAρ. For
δL
δAν

we get gϵνµλ∂µAλ. In total, we get
gϵνρµ∂µAρ − gϵνρµ∂ρAµ = −gϵνρµFµρ. Multiplying by -1, we get the desired field equation

∂µF
µν + gϵνµρFµρ = 0.

(e) Show that the quantity F̃ µ = ϵµνρFνρ obeys the identity ∂µF̃
µ = 0. [2]

[Unseen] We have ∂µF̃
µ = ϵµνρ∂µ [∂νAρ − ∂ρAν ]. For both terms the

antisymmetric nature of ϵµνρ kills the symmetric pair of partial derivatives, viz. ∂µ∂ν or

∂µ∂ρ. Hence ∂µF̃
µ = 0.

(f) Using the identity ϵµνρϵµαβ = δναδ
ρ
β − δνβδ

ρ
α, show that F̃ µ obeys the field

equation
(∂ν∂

ν +m2)F̃ µ = 0,

where m2 is a function of g whose form you should determine. [7]

[Unseen] Starting from F̃µ = ϵµνρFνρ and using the identity
ϵµνρϵµαβ = δναδ

ρ
β − δνβδ

ρ
α, we get Fµν = ϵµναF̃α/2. So plugging this into the field equation

∂µF
µν + gϵνµρFµρ = 0, we get

ϵµαβ∂µF̃β + 2gF̃α = 0.

Acting on this with ϵ γδ
α ∂γ yields, for the first term −∂2F̃ δ, where we used the identity

ϵµνρϵµαβ = δναδ
ρ
β − δνβδ

ρ
α again, along with ∂µF̃

µ = 0, and for the second term −4g2F̃ δ,

where we used the relation ϵµαβ∂µF̃β + 2gF̃α = 0. So in total we get the desired field

equation, with m2 = (2g)2.

(g) Discuss whether or not the field Aµ can propagate over long distances
and discuss how many polarizations it has. [3]

[Unseen] We see that the field equation for F̃µ takes the form of independent

Klein-Gordon equations for each component. So each propagates like a massive scalar

and will lead to a short range propagation, exponentially surpressed by the ‘mass’ 2g.
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There will however only be two degrees of freedom, because the 3 components of F̃µ are

subject to the relation ∂µF̃
µ = 0. But this is what we expect for a massive vector field in

2 + 1 dimensions: going to the rest frame, there should be two spin degrees of freedom,

rather than 3 as in 3 + 1 dimensions.

4 A crystalline ferromagnet has a magnetisation described by a vector with
real components m1 and m2 and is symmetric under m1 → −m1, m2 → −m2, and
m1 ↔ m2.

(a) Assuming that the fields do not vary throughout space, explain why the
Landau-Ginsburg free energy may be taken to be

f = α

[
1

2
t(m2

1 +m2
2) +

1

4
(m4

1 +m4
2 + 2λm2

1m
2
2)

]
,

where t = T−Tc

Tc
is the reduced temperature and α and λ are real constants. [6]

[Mostly seen] At large scales, we can expand in powers of the fields (and

derivatives, though these are neglected here). We should write the most general terms

consistent with the symmetries (on the basis that thermal flucatuations will generate

such terms even if they are not present microscopically), which up to quartic order in the

fields are m2
1 +m2

2, m
2
1m

2
2, and m4

1 +m4
2. A priori these can have arbitrary coefficients,

but we are also free to rescale m1,m2 by a common amount, and thus choose the

coefficients of two terms to be the same. It remains to fix the temperature dependence of

the coefficients. To get a phase transition, we need to expand the first term to linear

order in temperature (and Tc is the constant term), while for the other terms it suffices

to expand to zeroth order.

(b) Assuming α > 0, for what values of λ is the free energy bounded below? [3]

[Partly seen] At large values of the fields, the free energy is dominated by the
quartic terms, namely

m4
1 +m4

2 + 2λm2
1m

2
2.

We may write this in matrix form as

(
m2

1 m2
2

)(1 λ
λ 1

)(
m2

1

m2
2

)
.

The eigenvalues of the 2× 2 matrix are are 1± λ, with corresponding eigenvectors given

by e± ∝
(

1
±1

)
. Only the first of these is realisable, since the vector

(
m2

1 m2
2

)
always

has non-negative entries. So we see that the free energy is bounded below provided that

the corresponding eigenvalue 1 + λ is non-negative, implying λ ≥ −1.

A
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(c) By minimizing the free energy, find the number of physically-distinct
phases and characterise each of them in terms of the values of m1 and m2. [6]

[Partly seen] By differentiating w.r.t. m1, we get the field equation

m1t+m3
1 + λm1m

2
2 = 0

while the field equation for m2 can be obtained by symmetry by swapping m1 and m2.
We thus have a priori 4 possible cases:

1.m1 = 0 and m2 = 0, in which case we have f = 0;

2.m1 = 0 and m2
2 = −t, which clearly requires t < 0, such that f = −α t2

4 ;

3.m2 = 0 and m2
1 = −t, which because of the symmetry under interchange of m1 and

m2 is physically indistinguishable and so is not a distinct phase.

4.m2
1 + λm2

2 = −t and m2
2 + λm2

1 = −t, implying m2
1 = m2

2 =
−t
1+λ , such that

f = −α t2

2(1+λ) . Since λ ≥ −1, we see that this requires t < 0.

We thus have three distinct phases, which may be characterised by having either both

fields zero, one field zero, or neither field zero.

(d) Draw a phase diagram in the (t, λ) plane, taking care to indicate which
phases occur where and the location and order of the phase transitions. [10]

[Partly seen]

For t > 0, there is only one possible phase, namely the one where both fields
vanish. For t < 0 we have three possible phases, but the phases where at least one field is
non-zero have negative free energy, so must be favoured over the t > 0 phase. Since

−α
t2

2(1 + λ)
+ α

t2

4
= t2

α

4

λ− 1

λ+ 1
,
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we see that the third phase (with both fields non-vanishing is favoured when λ < 1. For
the order of the phase transitions, it suffices to compute the magnetisation on either side
of the transition. We find that the magnetisations are continuous at t = 0, but their
derivatives are not, indicating a second order transition. In contrast, at λ = 1 we find
that the magnetisations themselves are discontinuous, indicating a first order phase
transition.
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