NATURAL SCIENCES TRIPOS Part II

25th January $2022 \quad 10.30$ am to 12.30 pm

THEORETICAL PHYSICS I

Attempt all 4 questions. Answer each question in a separate booklet. The approximate number of marks allotted to each part of a question is indicated in the right margin. The paper contains 5 sides, including this one.

1 A point mass of mass m moves on a fixed circular ring of radius a lying in a horizontal plane.
(a) [Bookwork] Show that the angular velocity of the point mass is constant.

A second point mass of mass M moves on a second fixed circular ring of radius A lying in a horizontal plane a height h above the first plane, such that the centres of the two rings are aligned vertically. The two point masses are attached to each other by a spring whose spring constant is k and whose natural length vanishes.
(b) [Unseen] Write down the lagrangian of the system.
(c) [Mostly seen] Identify as many symmetries as you can and, where appropriate, find the corresponding conserved charges.
(d) [Unseen] Find all points of equilbrium of the system.
(e) [Unseen] For each equilibrium point, find the normal modes corresponding to small motions and discuss whether or not each point is stable.
(f) [Unseen] Give reasons why your expressions for the normal modes are consistent with the symmetries of the system.

2 A system in $1+1$ spacetime dimensions is described by a field $\phi(x, t)$ with a lagrangian density dependent on the field and its derivatives up to second order, $\mathcal{L}\left(\phi, \partial_{\mu} \phi, \partial_{\mu} \partial_{\nu} \phi\right)$.
(a) [Mostly Bookwork] Derive the Euler-Lagrange equations for this system.

Transverse waves on a compressed rod are described by a $1+1$ spacetime dimensional real scalar field $\phi(x, t)$ with lagrangian density of the form

$$
\mathcal{L}=\frac{1}{2} \rho\left(\frac{\partial \phi}{\partial t}\right)^{2}+\frac{1}{2} \alpha\left(\frac{\partial \phi}{\partial x}\right)^{2}-\frac{1}{2} \beta\left(\frac{\partial^{2} \phi}{\partial x^{2}}\right)^{2},
$$

where $\rho, \alpha, \beta>0$.
(b) [Bookwork] Discuss qualitatively the physical origin of each of the terms in the lagrangian, including a justification of their signs.
(c) [Unseen] Show that the action is invariant under shifts in ϕ and find the corresponding quantity that is conserved in time.
(d) [Partly seen] Using the Euler-Lagrange equations, show that the waves are dispersive.

Suppose now that such a rod of length l has its ends fixed.
(e) [Unseen] By considering the dispersion relation, or otherwise, discuss whether the rod is stable or unstable.

3 (a) [Bookwork] Explain briefly the principles of mean field theory and under what conditions it is considered a reliable approximation.

Consider spins S_{i}, each taking three possible values: $S_{i}=0, \pm 1$, arranged on a square lattice with N sites and periodic boundary conditions. The system has hamiltonian given by

$$
H=-\frac{J}{2} \sum_{i, \delta} S_{i} S_{i+\delta}-B \sum_{i} S_{i}
$$

where $J>0$ is the interaction coupling constant, δ labels the four neighbours of each site i, and B is a magnetic field.
(b) [Mostly bookwork] Compute the free energy of the system in the mean field approximation, and express it in terms of S (the order parameter, i.e., the mean approximation, and express it in terms of S (the order parameter, i.e., the mean
field average value of a spin) and of $\beta=\left(k_{B} T\right)^{-1}$ (where k_{B} is the Boltzmann constant and T is the temperature).
(c) [Bookwork] Explain what is meant by the mean field self-consistency condition and show that, for the problem at hand, it takes the form:

$$
S=\frac{2 \sinh [\beta(4 J S+B)]}{1+2 \cosh [\beta(4 J S+B)]}
$$

(d) [Bookwork but new algebra] Consider the case $B=0$. By means of a graphical method, or otherwise, demonstrate the existence of a critical point in the mean field approximation and find an expression for the critical temperature T_{c} in terms of the parameters of the system.
(e) [Mostly bookwork] Show that for temperatures slightly less than the critical temperature and for $B=0$, the order parameter is given by

$$
\begin{equation*}
S=\sqrt{\frac{8}{3}}|t|^{1 / 2} \quad \text { where } \quad t=\frac{T}{T_{c}}-1 \tag{4}
\end{equation*}
$$

(f) [Bookwork] Explain why the following equation is an appropriate Landau-Ginzburg free energy density f for the microscopic problem at hand:

$$
\begin{equation*}
f=f_{0}(T)+a\left(T-T_{c}\right) m(x)^{2}+\frac{1}{2} b m(x)^{4}+c\left[\frac{d m(x)}{d x}\right]^{2}-B m(x) \tag{3}
\end{equation*}
$$

where $m(x)$ is a real scalar field and a, b, c are real positive parameters.
(g) [Unseen] Consider the case where the term $B m(x)$ in the free energy above is replaced by $B^{3} m(x)$, and define the higher-order susceptibilities:

$$
\chi^{(n)}=\left.\frac{\partial^{n} \bar{m}}{\partial B^{n}}\right|_{B=0}, \quad n=1,2,3, \ldots
$$

where \bar{m} is the equilibrium value of the order parameter in the saddle point approximation. Show that, for $T>T_{c}, \chi^{(1)}=\chi^{(2)}=0$, and that $\chi^{(3)}$ diverges when T approaches T_{c} from above as $3 /\left[a\left(T-T_{c}\right)\right]$.

4 Consider the following lagrangian density for 2 real scalar fields in $1+1$ space-time dimensions, $\phi_{1}(x, t)$ and $\phi_{2}(x, t)$,

$$
\mathcal{L}=\frac{\partial \phi_{1}}{\partial t} \frac{\partial \phi_{2}}{\partial t}-c^{2} \frac{\partial \phi_{1}}{\partial x} \frac{\partial \phi_{2}}{\partial x}
$$

where $c>0$ is a real parameter with dimensions of velocity.
(a) [Part bookwork, part new] Find the field transformations of the form

$$
\binom{\phi_{1}}{\phi_{2}} \rightarrow\left(\begin{array}{ll}
\alpha & \beta \tag{4}\\
\gamma & \delta
\end{array}\right)\binom{\phi_{1}}{\phi_{2}}
$$

that leave the lagrangian density invariant (where $\alpha, \beta, \gamma, \delta$ are real parameters).
(b) [Part bookwork, part new] Recall that Noether's theorem applies only to transformations that are continuously connected to the identity. Compute the corresponding Noether current J^{μ} in the system and use the Euler-Lagrange equations to show that it satisfies the appropriate continuity equation, $\partial_{\mu} J^{\mu}=0$.
(c) [Mostly bookwork] Compute the stress energy tensor and show explicitly that it is conserved. If needed, you may assume the metric $g^{\mu \nu}=\operatorname{diag}(1,-1)$.
(d) [Unseen] Now consider the modified lagrangian density

$$
\mathcal{L}=\frac{\partial \phi_{1}}{\partial t} \frac{\partial \phi_{2}}{\partial t}-c^{2} \frac{\partial \phi_{1}}{\partial x} \frac{\partial \phi_{2}}{\partial x}+\frac{1}{2 \tau}\left(\phi_{1} \frac{\partial \phi_{2}}{\partial t}-\phi_{2} \frac{\partial \phi_{1}}{\partial t}\right),
$$

where $\tau>0$ is a real parameter with dimensions of time. Solve the Euler-Lagrange equations for this lagrangian density, find the corresponding dispersion relations, and write the solutions in complex exponential form $\phi_{j}=A_{j} e^{i\left(k_{j} x-\omega_{j} t\right)}$ for $j=1,2$.
(e) [Unseen] Discuss how the behaviour of the solutions changes for $c^{2} k_{j}^{2}>1 /\left(4 \tau^{2}\right)$ and for $c^{2} k_{j}^{2}<1 /\left(4 \tau^{2}\right)$.

