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Friday 22 January 2021 2pm to 4pm

THEORETICAL PHYSICS I

Attempt all 4 questions. The approximate number of marks allotted
to each part of a question is indicated in the right margin. The
paper contains ?? sides.

1 The mechanical system shown in the Figure below consists of two bobs, each
of mass m, each attached by a light rod of length a to a pivot rotating with
constant angular velocity Ω about the vertical axis. The bobs are attached to each
other by a spring whose spring constant is k and whose natural length vanishes.

(a) [Bookwork]Show that the sum of the gravitational potential energy and the
energy stored in the spring may be written (up to a constant) as

−mga(cos θ + cosφ)− ka2 cos(θ + φ),

where θ and φ are the angles between the rods and the downward vertical axis. [4]
——————
For the gravitational potential energy, we evidently have the sum

−mga(cos θ + cosφ) relative to zero when the rods are horizontal and the minus

A



2

sign reflects that the energy increases as the angle does. For the spring, we have
that the length of the base is given by the cosine rule as
1
2
k(a2 + a2 − 2a2 cos(θ + φ); dropping the constant term gives us the desired result.

——————

(b) [Bookwork]Find the lagrangian of the system. [3]
——————
To the potential energy terms already derived we must add the kinetic

energy terms. These contain a piece given by e.g. 1
2
ma2θ̇2 from the rotation of the

rod in the plane of the rods, together with a piece 1
2
m(a sin θ)2Ω2 coming from the

rotation about the vertical axis. Putting everything together, we get

L =
1

2
ma2(θ̇2 + φ̇2) +

1

2
ma2Ω2(sin2 θ+ sin2 φ) +mga(cos θ+ cosφ) + ka2 cos(θ+ φ)

——————

(c) [Mostly seen] Show that the system is invariant under time translations, and
find the corresponding conserved quantity. What other symmetries does the
system possess? [5]

——————
The only place t appears in the lagrangian is in the derivatives, so the

lagrangian is evidently time-translation-invariant; the corresponding conserved
quantity may either be derived using Noether’s theorem, or we may note that it is
simply T + V , though we must take care that V also includes the terms without
derivatives coming from the rotation about the vertical axis. Either way, we get
that

E =
1

2
ma2(θ̇2 + φ̇2)− 1

2
ma2Ω2(sin2 θ+ sin2 φ)−mga(cos θ+ cosφ)− ka2 cos(θ+φ).

The system is also symmetric under the discrete Z/2 symmetry given by φ↔ θ.
There is no conserved current, but this will nevertheless be useful in what follows.
The system is also symmetric under rotations about the vertical axis.

——————

(d) [Unseen] Show that, when Ω2 6= g/a and the angles θ and φ are small but
non-vanishing, the only equilibrium positions occur at θ = φ. [4]

——————
We derive the equilibrium positions by differentiating V with respect to the

2 angles. We obtain

0 = ma2Ω2 sin θ cos θ −mga sin θ − ka2 sin(θ + φ),

together with (by symmetry) the same equation with φ↔ θ. Subtracting one from
the other, we get

0 = ma2Ω2(sin θ cos θ − sinφ cosφ)−mga(sin θ − sinφ).
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When the angles are small enough and Ω2 6= g/a, this reduces to a linear equation
in the angles with just one solution, namely θ = φ. (For larger angles, there is
always a solution with θ = φ, but there may be other solutions.)

———————
(e) [Unseen] Find the equilibrium points with θ = φ, show that one normal

frequency at such an equilibrium point with θ = θ0 is given by

1

2π

√
g/a cos θ0 −Ω2 cos 2θ0,

and find the other normal frequency. [6]
———————
When θ = φ, we find that either sin θ = 0 or cos θ = g/a

Ω2−2k/m in equilibirum,
using the equations above. The second derivatives of the lagrangian about such a
point are

∂2L

∂θ2
= (mΩ2 − k)a2 cos 2θ0 −mga cos θ0 (1)

∂2L

∂φ2
= (mΩ2 − k)a2 cos 2θ0 −mga cos θ0 (2)

∂2L

∂θ∂φ
= −ka2 cos 2θ0 (3)

So the Euler-Lagrange equations for the normal modes yield(
θ̈

φ̈

)
=

(
x y
y x

)(
θ
φ

)
with x := (Ω2 − k/m) cos 2θ0 − g/a cos θ0, y := −k/m cos 2θ0.

The normal frequencies are found from the eigenvalues
ω2 = −x± y = g/a cos θ0 −Ω2 cos 2θ0, g/a cos θ0 −Ω2 cos 2θ0 + 2k/m cos 2θ0.
Taking the square roots and dividing by 2π gives the normal frequencies.

——————

(f) [Unseen] Give a sufficient condition for such an equilibrium point to be stable,
in terms of θ0 and the other parameters. [3]

——————
As Ω increases, the normal frequencies become imaginary, indicating that

the equilibrium point is unstable. The system moves to an equilibrium point at
larger angles. To find the critical value of Ω, we seek the point at which the lowest

eigenvalue vanishes. This is 0 = g/a cos θ0 −Ω2 cos 2θ0, so we need Ω <
√

g cos θ0
a cos 2θ0

.
——————
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2 A fluid moving in 2+1 dimensional spacetime with co-ordinates xµ, with
µ ∈ {0, 1, 2}, is described by 2 real fields ϕi(xµ), with i ∈ {1, 2}, and has
lagrangian density

L = −1

2
detA

where A is the 2× 2 matrix whose ijth element is Aij = ∂µϕi∂µϕ
j.

(a) [Bookwork] Show that detA = ∂µϕ1∂µϕ
1∂νϕ2∂νϕ

2 − ∂µϕ1∂µϕ
2∂νϕ1∂νϕ

2 [3]
——————
This follows immediately from the definition of the determinant of a 2×2

matrix. We use distinct pairs of dummy indices µ and ν so that the summation
convention can be used.

——————

(b) [Unseen] Show that for small oscillations about the equilibrium point ϕi = xi,
such that ϕi = xi + πi, the lagrangian density may be approximated by

L =
1

2
∂0π

i∂0π
i − 1

2
(∂iπ

i)2.

[8]
——————
We expand ϕi = xi + πi, keeping terms up to quadratic order in the fields.

So for the first term in the lagrangian density we need the product of

∂µϕ1∂µϕ
1 = (∂0ϕ

1)2 − (∂1ϕ
1)2 − (∂2ϕ

1)2 (4)

= (π̇1)2 − (1 + ∂1π
1)2 − (∂2π

1)2 (5)

= −1− 2∂1π
1 + (π̇1)2 − (∂1π

1)2 − (∂2π
1)2 (6)

and

∂µϕ2∂µϕ
2 = (π̇2)2 − (∂1π

2)2 − (1 + ∂2π
2)2 (7)

= −1− 2∂2π
2 + (π̇2)2 − (∂2π

2)2 − (∂1π
2)2 (8)

while for the second term we need

−∂µϕ1∂µϕ
2∂νϕ1∂νϕ

2 = −
[
π̇1π̇2 − (1 + ∂1π

1)∂1π
2 − (1 + ∂2π

2)∂2π
1
]2 ' [∂1π2 + ∂2π

1
]2
.

In total, the terms up to quadratic order are

L = −1

2

[
1 + 2(∂1π

1 + ∂2π
2)− (π̇1)2 − (π̇2)2 + (∂1π

1 + ∂2π
2)2 + 2(∂1π

1∂2π
2 − ∂1π2∂2π

1)
]

But the first, second, and final terms are all total derivatives, so we write this more
simply as

L = +
1

2
π̇iπ̇i − 1

2
(∂iπ

i)2
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as required.
——————

(c) [Mostly seen] By Fourier expanding πi =
∫
d3kµai(kµ)eikµx

µ
, calculate the

dispersion relations k0(ki) for longitudinal and transverse waves and give an
explanation in terms of the physics of fluids. [5]

——————
Plugging the given Fourier expansion into either the equations of motion or

directly into the lagrangian density, we see that the models have dispersion
relations satisfying

0 = (k0)2(ai)2 − (kiai)2.

So if we choose polarisation vector ai ∝ ki parallel to the spatial wavevector, we
find a dispersion relation given by ω2 = k2, which correspond to sound waves (with
a sound speed equal to 1 in these units). Whereas if we choose polarisation vector
ai perpendicular to the spatial wavevector, we find a dispersion relation given by
ω2 = 0. This appears odd at first glance, but closer inspection shows it to be not
so. We know that fluids possess vortex excitations, which infinitesimally are indeed
transverse. Such vortices can have any spatial extent, and moreover they can have
arbitrarily small energy no matter what their spatial extent. So we must have
ω = 0.

An equivalent explanation is that fluids have no shear modulus, so shear
waves have zero frequency.

——————

(d) [Unseen] Suppose the lagrangian density is replaced by the more general
expression

Lf = −1

2
f(detA),

where f is an arbitrary function. Find an expression for the speed of sound in the
fluid in terms of the derivatives of f . [5]

——————
For the more general lagrangian density, we can essentially ring the changes.

But we must take care in that when we perform the expansion in small
fluctuations, we get contributions from higher derivatives of f . Indeed we have

L = −1

2

[
f(1) + f ′(1)(detA− 1) +

1

2
f ′′(1)(detA− 1)2 + . . .

]
(9)

= −1

2

[
f ′(1)(−(π̇i)2 + (∂iπ

i)2) +
1

2
f ′′(1)(2∂iπ

i)2
]

(10)

where we have ignored various total derivative and terms which are more than
quadratic in the fields. We thus now have

L =
1

2
f ′(1)(π̇i)2 − 1

2
(f ′(1) + 2f ′′(1))(∂iπ

i)2.
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Thus, comparing with the dispersion relation for longitudinal modes derived in the
last part, we read off that the sound speed is given by cs =

√
1 + 2f ′′(1)/f ′(1).

——————

(e) [Partly unseen] Identify as many symmetries as you can of the lagrangian Lf .
[4]

——————
The lagrangian is obviously invariant under Lorentz transformations of xµ, as

well as spacetime translations, making up the Poincaré group. The fact that the
lagrangian is derivatively coupled shows that translations in the target space fields
φi are symmetries and the summation of indices also shows that we can rotate the
components of φi. But in fact the group of internal symmetries is much larger,
because the determinant is invariant under any change of coordinates of φi which
do not change areas, of which translations and rotations are a tiny subset. In fact
there are infinitely many conserved charges here, which can be shown to correspond
directly to Kelvin’s theorem on the conservation of circulation in a fluid.

——————
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3 A system is described by the lagrangian density

L =
1

2
∂µN · ∂µN ,

where N (xµ) ∈ R3 is a vector field.
(a) Show that N → Ñ = N + φ×N , where φ ∈ R3 are the infinitesimal

transformation parameters, is a symmetry transformation of the lagrangian and
find the associated conserved charges. [6]

——————
We have

ÑiÑi = (Ni + εijkφjNk) (Ni + εijkφjNk) (11)

= NiNi + 2εijkNiNkφj (12)

= NiNi, (13)

by the antisymmetry of the Levi-Civita tensor with respect to transpositions and
terms have been kept to first order in φ.

We have δNi = εijkφjNk for i = 1, 2, 3. The associated Noether current is
given by

Jµ =
∑
i

∂L
∂ (∂µNi)

δNi

= ∂µNiεijkφjNk.

The corresponding conserved charge is

Q =

∫
d3r J0

=

∫
d3r πi · εijkφjNk

= φj

∫
d3r εjkiNkπi.

Because we can choose any φ ∈ R3 there are three independently conserved
charges which make up the conserved angular momentum vector

L =

∫
d3r N × π.

——————

Consider now the space-time transformation

xµ → x′µ = xµ + ε0µαβθαxβ,
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where ενµαβ is the totally antisymmetric Levi-Civita tensor and the infinitesimal
transformation parameters are described by the real four-vector θµ = (0, θ1, θ2, θ3).
All expressions will be given to first order in θµ and you should only work to this
order.

(b) [Unseen] Show that

∂

∂xµ
=

∂

∂x′µ
− ε0µαβθα

∂

∂x′β
.

[3]
——————

∂

∂xµ
xσ =

(
∂

∂x′µ
− ε0µαβθα

∂

∂x′β

)(
x′σ − ε0σαβθαx′β

)
= δσµ −

(
ε0σαµ + ε0µασ

)
θα

= δσµ

as required.
——————

(c) [Mostly seen] Hence, show that the field transformation
N (xµ)→ Ñ (xµ) = N (x′µ) changes the action only by a boundary term. Show
that the conserved charges associated with this symmetry transformation are given
by

Qσ = ε0σαβ
∫

d3r xα ∂0N · ∂βN .

[10]
——————

∑
i

∂Ñi

∂xµ
∂Ñi

∂xµ
=

∑
i

(
∂

∂x′µ
− ε0µαβθα

∂

∂x′β

)
Ñi

(
∂

∂x′µ
− ε0 αβ

µ θα
∂

∂x′β

)
Ñi (14)

=
∑
i

(
∂Ñi

∂x′µ
∂Ñi

∂x′µ
− ∂Ñi

∂x′µ

∂Ñi

∂x′β
ε0µαβθα −

∂Ñi

∂x′µ

∂Ñi

∂x′β
ε0µαβθα

)
(15)

=
∑
i

∂Ñi

∂x′µ
∂Ñi

∂x′µ
(16)

because ∂Ñi
∂x′µ

∂Ñi
∂x′β

is symmetric for µ, β 6= 0. Hence,

L

(
Ñi,

∂Ñi

∂xµ

)
= L

(
Ni(x

′µ),
∂Ni(x

′µ)

∂x′µ

)
= L(x′µ). (17)
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To find the associated conserved charges, express

δL =
∑
i

(
∂L
∂Ni

δNi +
∂L

∂ (∂µNi)
∂µδNi

)
(18)

=
∑
i

∂µ

[
∂L

∂ (∂µNi)
δNi

]
= ε0µαβθαxβ∂µL. (19)

Hence,

∂µ

[∑
i

∂L
∂ (∂µNi)

δNi − ε0µαβθαxβL

]
= 0 (20)

With δNi = ε0µαβθαxβ∂µNi, this gives the associated conserved charge as

Q =
∑
i

∫
d3r ∂0Ni · ε0µαβθαxβ∂µNi (21)

= θα
∑
i

∫
d3r ∂0Ni · ε0αβµxβ∂µNi (22)

Considering different choices of θα gives the three independently conserved charges
given in the question.

——————

(d) Deduce the reduced rotation symmetry when the term (∇ ·N )2 is added to L,
find the associated conserved charges, and interpret their physical meaning. [6]

——————
In the presence of the term (∇ ·N )2 in Lσ, the lagrangian is no longer

symmetric under rotation of r or rotation of N . However, it is symmetric under a
simultaneous rotation of N and r in opposite directions and by the same angle.
Hence, it is now the difference of intrinsic and orbital angular momenta which is
conserved

Jtot =

∫
d3r

(
N × π −

∑
i

x× πi∇Ni

)
. (23)

This first term corresponds to intrinsic angular momentum, because there is no
dependence on k in the Fourier-domain, i.e. the angular momentum can be
non-zero even if there are only Fourier modes with k = 0.

——————
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4 The lagrangian density of an electromagnetic field interacting with charged
matter is given by

Lem = −1

4
F µνFµν − jµAµ,

where Fµν = ∂µAν − ∂νAµ. In this question we will look at charge-neutral systems
with a bound current, such that j0 = A0 = 0.

(a) By parametrising the bound current as j = ∇×M + ∂0P , where M ,P ∈ R3

are the magnetisation and polarisation fields respectively, show that for a
charge-neutral system the action can be rewritten in terms of the lagrangian
density

Lem = −1

4
F µνFµν +M ·B + P ·E,

where the magnetic and electric fields B and E are defined with respect to Aµ in
the usual way. [5]

——————
We have

−jµAµ = j ·A (24)

= (∇×M + ∂tP ) ·A (25)

= εijkAi∂jMk + Ai∂0Pi (26)

= εijk∂j (AiMk)− εijkMk∂jAi + ∂0 (AiPi)− Pi∂0Ai (27)

= εkjiMk∂jAi − Pi∂0Ai (28)

= M · (∇×A)− P · ∂0A (29)

= M ·B + P ·E, (30)

where boundary terms that do not affect the action have been neglected.
——————

(b) A ferromagnet is described by the lagrangian density

LFM = Lem −
t

2
M 2 − u

(
M 2

)2
,

with P = 0 and u > 0, t constant. A magnetic field of strength h > 0 is applied
along the positive x1-direction. By considering the appropriate Euler-Lagrange
equation, write down the equation satisfied by M . Hence, find the zero-field
susceptibility (∂M/∂h)h→0+ . [7]

——————
The Euler-Lagrange equation for M is given by

∂µ

(
∂L

∂ (∂µMi)

)
=

∂L
∂Mi

(31)

0 = −tMi − 4u|M |2Mi +Bi (32)

A
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For B = hx̂ 6= 0, we only have magnetisation along x1. Differentiating the
equation for i = 1 with respect to h, we obtain

0 = −tχ− 12uM2
1χ+ 1, (33)

where χ = (∂M1/∂h). The magnetisation as B = hx̂→ 0 is given by

M2
1 =


0 t > 0,

−t
4u

t < 0.

Hence, the zero-field susceptibility is given by

χ =


1
t

t > 0,

1
−2t t < 0.

——————

(c) Now consider instead a plasma, described by the lagrangian density

Ld = Lem +
1

2m2
(∂0P )2 ,

with M = 0 and m a constant. By considering the appropriate Euler-Lagrange
equation and ensuring that causality is respected, show that the bound current in
the plasma is given by

j(ω) = m2 lim
ε→0+

E(ω)

iω + ε
,

where Fourier transforms with respect to time are defined in the usual way, e.g.
j(ω) =

∫
dt j(t)e−iωt. You can assume that all of the current in the plasma is

generated in response to a non-zero electric field. [6]
——————
The Euler-Lagrange equation for P is given by

∂µ

(
∂L

∂ (∂µPi)

)
=

∂L
∂Pi

(34)

1

m2
∂20Pi = Ei (35)

1

m2
∂0ji = Ei, (36)

where the last line follows from the fact that for M = 0, the bound current is
given by ji = ∂0Pi. The Green’s function of the above equation is given by

G(t) = m2Θ(t), (37)
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where Θ(t) is the Heaviside step function and respects causality as G(t < 0) = 0.
Fourier transforming the Heaviside step function we obtain

G(ω) = lim
ε→0+

m2

iω + ε
(38)

and ji(ω) = G(ω)Ei(ω), assuming all current is generated in response to the
electric field (i.e. vanishing complementary function). Let’s check that causality is
respected. G(ω) has a pole at ω = iε with a residue of −im2 in the upper
half-plane. Evaluating

G(t) = m2

∮
C

dω

2π

eiωt

iω + ε
=


m2 t > 0,

0 t < 0,

where we have to close the contour C in the upper half-plane for t > 0 and in the
lower half-plane for t < 0.

——————

(d) Working in the Lorenz gauge ∂µA
µ = 0, write down the Euler-Lagrange

equation satisfied by Aµ in the plasma and find the dispersion relation of the field.
Compare the behaviour of the gauge field in the plasma with the Higgs
mechanism. [7]

——————

∂µ

(
∂L

∂ (∂µAν)

)
=

∂L
∂Aν

(39)

−1

2
∂µ (F µν − F νµ) = jν (40)

∂µ∂
µAν − ∂ν∂µAµ = jν (41)

∂µ∂
µAν = jν (42)

in the Lorentz gauge. Fourier transforming the equation, we obtain

−kµkµAν(kσ) = jν(kσ). (43)

For a charge-neutral system, this reduces to

(ω2 − k2)A(kσ) = −j(kσ). (44)

Substituting the expression for the current in a dielectric j(ω) = −iωm2A(ω)
iω+ε

, we
obtain

(ω2 − k2)A(kσ) = m2 iωA(kσ)

iω + ε
. (45)
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For ω 6= 0, we obtain the following dispersion

ω2 = k2 +m2. (46)

Dynamical (propagating, ω 6= 0) Fourier modes of A(kσ) are massive, as in the
Higgs mechanism. However, static (ω = 0) Fourier modes satisfy the massless
Laplace’s equation

k2A(ω = 0,k) = 0. (47)

A static magnetic field is completely unaffected by the plasma as no currents are
generated. This is unlike the Higgs mechanism, where we have(

k2 +m2
)
A(ω = 0,k) = 0, (48)

or in real space

∇2A(r) = m2A(r), (49)

which, for example, leads to the expulsion of the magnetic field from a
superconductor (Meissner effect).

——————

END OF PAPER
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