Friday 22 January 2021 2pm to 4pm

THEORETICAL PHYSICS I

Attempt all 4 questions. The approximate number of marks allotted to each part of a question is indicated in the right margin. The paper contains 4 sides.

1 The mechanical system shown in the Figure below consists of two bobs, each of mass m, each attached by a light rod of length a to a pivot rotating with constant angular velocity Ω about the vertical axis. The bobs are attached to each other by a spring whose spring constant is k and whose natural length vanishes.

(a) Show that the sum of the gravitational potential energy and the energy stored in the spring may be written (up to a constant) as

$$-mga(\cos\theta + \cos\phi) - ka^2\cos(\theta + \phi),$$

where θ and ϕ are the angles between the rods and the downward vertical axis. (b) Find the lagrangian of the system.	[4]
	[3]
(a) Characteristic the constant is increasing the day time three latings and find the	

(c) Show that the system is invariant under time translations, and find the corresponding conserved quantity. What other symmetries does the system possess?

[5]

(d) Show that, when $\Omega^2 \neq g/a$ and the angles θ and ϕ are small but non-vanishing, the only equilibrium positions occur at $\theta = \phi$.

(e) Find the equilibrium points with $\theta = \phi$, show that one normal frequency at such an equilibrium point with $\theta = \theta_0$ is given by

$$\frac{1}{2\pi}\sqrt{g/a\cos\theta_0-\Omega^2\cos2\theta_0},$$

and find the other normal frequency.

(f) Give a sufficient condition for such an equilibrium point to be stable, in terms of θ_0 and the other parameters.

2 A fluid moving in 2+1 dimensional spacetime with co-ordinates x^{μ} , with $\mu \in \{0, 1, 2\}$, is described by 2 real fields $\varphi^i(x^{\mu})$, with $i \in \{1, 2\}$, and has lagrangian density

$$\mathcal{L} = -\frac{1}{2} \mathrm{det}A$$

where A is the 2 × 2 matrix whose *ij*th element is $A^{ij} = \partial^{\mu} \varphi^i \partial_{\mu} \varphi^j$.

(a) Show that $\det A = \partial^{\mu} \varphi^{1} \partial_{\mu} \varphi^{1} \partial^{\nu} \varphi^{2} \partial_{\nu} \varphi^{2} - \partial^{\mu} \varphi^{1} \partial_{\mu} \varphi^{2} \partial^{\nu} \varphi^{1} \partial_{\nu} \varphi^{2}$ [3]

(b) Show that for small oscillations about the equilibrium point $\varphi^i = x^i$, such that $\varphi^i = x^i + \pi^i$, the lagrangian density may be approximated by

$$\mathcal{L} = \frac{1}{2} \partial_0 \pi^i \partial_0 \pi^i - \frac{1}{2} (\partial_i \pi^i)^2.$$

[8]

[5]

 $\left[5\right]$

[4]

[6]

[3]

(c) By Fourier expanding $\pi^i = \int d^3 k^{\mu} a^i (k^{\mu}) e^{ik_{\mu}x^{\mu}}$, calculate the dispersion relations $k^0(k^i)$ for longitudinal and transverse waves and give an explanation in terms of the physics of fluids.

(d) Suppose the lagrangian density is replaced by the more general expression

$$\mathcal{L}_f = -\frac{1}{2}f(\det A),$$

where f is an arbitrary function. Find an expression for the speed of sound in the fluid in terms of the derivatives of f.

(e) Identify as many symmetries of the lagrangian \mathcal{L}_f as you can. [4]

3 A system is described by the lagrangian density

$$\mathcal{L} = rac{1}{2} \partial^{\mu} oldsymbol{N} \cdot \partial_{\mu} oldsymbol{N},$$

where $N(x^{\mu}) \in \mathbb{R}^3$ is a vector field.

(a) Show that $N \to \tilde{N} = N + \phi \times N$, where $\phi \in \mathbb{R}^3$ are the infinitesimal transformation parameters, is a symmetry transformation of the action and find the associated conserved charges.

Consider now the space-time transformation

$$x^{\mu} \to x'^{\mu} = x^{\mu} + \epsilon^{0\mu\alpha\beta}\theta_{\alpha}x_{\beta}$$

where $\epsilon^{\nu\mu\alpha\beta}$ is the totally antisymmetric Levi-Civita tensor and the infinitesimal transformation parameters are described by the real four-vector $\theta^{\mu} = (0, \theta^1, \theta^2, \theta^3)$. All expressions will be given to first order in θ^{μ} and you should only work to this order.

(b) Show that

$$\frac{\partial}{\partial x^{\mu}} = \frac{\partial}{\partial x'^{\mu}} - \epsilon^{0\mu\alpha\beta} \theta_{\alpha} \frac{\partial}{\partial x'^{\beta}}.$$
[3]

(c) Hence, show that the field transformation $N(x^{\mu}) \to \tilde{N}(x^{\mu}) = N(x'^{\mu})$ changes the action only by a boundary term. Show that the conserved charges associated with this symmetry transformation are given by

$$Q^{\sigma} = \epsilon^{0\sigma\alpha\beta} \int \mathrm{d}^3 \boldsymbol{r} \, x_{\alpha} \, \partial_0 \boldsymbol{N} \cdot \partial_{\beta} \boldsymbol{N}.$$
[10]

(d) Deduce the reduced rotation symmetry when the term $(\nabla \cdot N)^2$ is added to \mathcal{L} , find the associated conserved charges, and interpret their physical meaning. [6]

[6]

4 The lagrangian density of an electromagnetic field interacting with charged matter is given by

$$\mathcal{L}_{\rm em} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} - j_{\mu} A^{\mu},$$

where $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$. In this question we will look at charge-neutral systems with a bound current, such that $j_0 = A_0 = 0$.

(a) By parametrising the bound current as $\boldsymbol{j} = \boldsymbol{\nabla} \times \boldsymbol{M} + \partial_0 \boldsymbol{P}$, where $\boldsymbol{M}, \boldsymbol{P} \in \mathbb{R}^3$ are the magnetisation and polarisation fields respectively, show that for a charge-neutral system the action can be rewritten in terms of the lagrangian density

$$\mathcal{L}_{em} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} + \boldsymbol{M}\cdot\boldsymbol{B} + \boldsymbol{P}\cdot\boldsymbol{E},$$

where the magnetic and electric fields \boldsymbol{B} and \boldsymbol{E} are defined with respect to A^{μ} in the usual way.

(b) A ferromagnet is described by the lagrangian density

$$\mathcal{L}_{\mathrm{FM}} = \mathcal{L}_{\mathrm{em}} - \frac{t}{2} \boldsymbol{M}^2 - u \left(\boldsymbol{M}^2 \right)^2$$

with $\mathbf{P} = \mathbf{0}$ and u > 0, t constant. A magnetic field of strength h > 0 is applied along the positive x^1 -direction. By considering the appropriate Euler-Lagrange equation, write down the equation satisfied by \mathbf{M} . Hence, find the zero-field susceptibility $(\partial \mathbf{M}/\partial h)_{h\to 0^+}$.

(c) Now consider instead a plasma, described by the lagrangian density

$$\mathcal{L}_{\rm d} = \mathcal{L}_{\rm em} + rac{1}{2m^2} \left(\partial_0 \boldsymbol{P}\right)^2,$$

with M = 0 and m a constant. By considering the appropriate Euler-Lagrange equation and ensuring that causality is respected, show that the bound current in the plasma is given by

$$\boldsymbol{j}(\omega) = m^2 \lim_{\epsilon \to 0^+} \frac{\boldsymbol{E}(\omega)}{i\omega + \epsilon},$$

where Fourier transforms with respect to time are defined in the usual way, e.g. $\mathbf{j}(\omega) = \int dt \, \mathbf{j}(t) e^{-i\omega t}$. You can assume that all of the current in the plasma is generated in response to a non-zero electric field.

(d) Working in the Lorenz gauge $\partial_{\mu}A^{\mu} = 0$, write down the Euler-Lagrange equation satisfied by A^{μ} in the plasma and find the dispersion relation of the field. Compare the behaviour of the gauge field in the plasma with the Higgs mechanism. [7]

END OF PAPER

[7]

[6]

[5]