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THEORETICAL PHYSICS I

Answers

1

(a) The x position of mass m2 is given by

x′ = x + l sin φ

ẋ′ = ẋ + lφ̇ cos φ

ẋ′
2

= ẋ2 + 2lẋφ̇ cos φ + l2φ̇2 cos2 φ

The y position of mass m2 is given by

y′ = −l cos φ

ẏ′ = lφ̇ sin φ

ẏ′
2

= l2φ̇2 sin2 φ

The total kinetic energy is therefore

T =
1

2
m1ẋ

2 +
1

2
m2

(

ẋ2 + 2lẋφ̇ cos φ + l2φ̇2
)

and the potential energy is

V = −m2gl cos φ
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2

Hence the Lagrangian is given by

L = T − V =
1

2
m1ẋ

2 +
1

2
m2

(

ẋ2 + 2lẋφ̇ cos φ + l2φ̇2
)

+ m2gl cos φ

(b) The canonical momentum conjugate to x is

px =
∂L

∂ẋ
= (m1 + m2)ẋ + m2lφ̇ cos φ

Using the associated Euler-Lagrange equation

ṗx =
d

dt

∂L

∂ẋ
=

∂L

∂x
= 0

so px is a conserved quantity.

The canonical momentum conjugate to φ is

pφ =
∂L

∂φ̇
= m2l

2φ̇ + 2lẋ cos φ

Using the associated Euler-Lagrange equation

ṗφ =
d

dt

∂L

∂φ̇
=

∂L

∂φ
= −m2lẋφ̇ sin φ − m2gl sin φ

so pφ is not a conserved quantity.

(c) Using conservation of px

0 = (m1 + m2)ẋ + m2lφ̇ cos φ

Integrating this we find

λ = (m1 + m2)x + m2l sin φ

where λ is a constant. Using the expression for x′ above we therefore find

sin φ =
(m1 + m2)x

′ − λ

m1l

Re-arranging the expression for y′ we have

cos φ =
−y′

l

Squaring and summing these we find

(

(m1 + m2)x
′ − λ

m1l

)2

+

(

y′

l

)2

= 1

which, as required, is an equation for an ellipse.
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(d) Energy is conserved so

E = T + V =
1

2
m1ẋ

2 +
1

2
m2

(

ẋ2 + 2lẋφ̇ cos φ + l2φ̇2
)

− m2gl cos φ (1)

Substituting for ẋ from part (c) we find

E =
1

2
m2l

2φ̇2

(

m1 + m2 sin2 φ

m1 + m2

)

− m2gl cos φ

Re-arranging this expression for φ̇ we find

l
dφ

dt
=

√

√

√

√

E + m2gl cos φ
1
2
m2l

.
m2 + m1

m1 + m2 sin2 φ

Hence, integrating, we find

t = l

√

m2

2(m2 + m1)

∫ φ2

φ1

dφ

√

√

√

√

m1 + m2 sin2 φ

E + m2gl cos φ

2 (a) The transformation

x = X + α1X
2 + 2α2XP + α3P

2

p = P + β1X
2 + 2β2XP + β3P

2

will be canonical if the Poisson bracket

{x, p}X,P =
∂x

∂X

∂p

∂P
− ∂x

∂P

∂p

∂X
= 1

= (1 + 2α1X + 2α2P )(1 + 2β2X = 2β3P ) + higher order terms

= 1 + 2(α1 + β2)X + 2(α2 + β3)P + higher order terms

Therefore we must have β2 = −α1 and β3 = −α2.

(b)

K(X, P ) =
(X + β1X

2 − 2α1XP + α2P
2)2

2m
+

1

2
mω2(X + α1X

2 + 2α2XP + α3P
2)2

+ λ(X + α1X
2 + 2α2XP + α3P

2)3

=
P 2

2m
+

1

2
mω2X2 + X3(α1mω2 + λ) + P 3(−α2

m
)

+ XP 2(−2α1

m
+ α3mω2) + PX2(

β1

m
+ 2α2mω2)

Hence we must have

α1 = − λ

mω2
, α2 = 0, α3 = − 2

m

λ

mω2

β1 = 0, β2 =
λ

mω2
, β3 = 0
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hence

x = X − λ

mω
(X2 +

2

m

P 2

mω2
)

p = P +
2λ

mω2
XP

(c)

dX

dt
=

∂K

∂P
=

P

m
dP

dt
= −∂K

∂X
= −mω2X

Hence

P = A cos(ωt + φ)

X =
A

mω
sin(ωt + φ)

(d) Using definitions for X and P from part (c)

x = X − λ

mω
(X2 +

2

m

P 2

mω2
)

p = P +
2λ

mω2
XP

Substituting for X and P from above we find that x and p now have
components oscillating at 2ω .

3 The Euler-Lagrange equation is:

d

dt

(

∂L

∂v

)

=
∂L

∂x
= e∇(v · A) − e∇φ = e(v · ∇)A + e[v × (∇× A)] − e∇φ

Then using
dA

dt
=

∂A

∂t
+ (v · ∇)A,

we obtain the equation of motion

d(mv)

dt
= −e

∂A

∂t
− e∇φ + e[v × (∇× A)] = eE + e v × B,

as expected.
The equation of motion of a physical particle is determined by the physically

observable fields E and B. However the potentials φ and A which determine these
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fields and contribute to the Lagrangian function are not unique. If we add the
gradient of an arbitrary scalar function f(x, t) to the vector potential A, i.e.

A′

i = Ai +
∂f

∂xi

,

the magnetic flux density B will not change, because curl∇f ≡ 0. To have the
electric field unchanged as well, we must simultaneously subtract the
time-derivative of f from the scalar potential:

φ′ = φ − ∂f

∂t
.

The invariance of all electromagnetic processes with respect to the above
transformation of the potentials by an arbitrary function f is called gauge

invariance.

(a) Using the given expressions for A and φ, the Lagrangian becomes

L =
1

2
m(ṙ2 + r2θ̇2 + ż2) − eλz2 + eµr2θ̇.

The E-L equation corresponding to coordinate r is then:

d(mṙ)

dt
= mrθ̇2 + 2eµrθ̇ = rθ̇[mθ̇ + 2eµ],

and for θ:
d

dt

[

mr2θ̇ + eµr2
]

= 0,

and for z:

d(mż)

dt
= −2eλz ⇒ z̈ + κ2z = 0, κ2 = 2eλ/m.

(b) Because L does not depend explicitly on t, the total energy as given by
the Hamiltonian of the system is conserved, dH/dt = 0. In general

H =
∑

i

∂L

∂q̇i

q̇i − L.

with here qi = (r, θ, z). Hence the total energy of the particle

E =
1

2
m(ṙ2 + r2θ̇2 + ż2) + eλz2

is a constant of the motion.

(c) From the E-L equation for θ(t) above, we have immediately that

J = mr2θ̇ + eµr2 = r2[mθ̇ + eµ]

is another constant of the motion (generalised angular momentum).
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(d) If r = R, then ṙ = r̈ = 0 and from the above equation for r we obtain
θ̇ = −2eµ/m =constant, i.e. circular motion around the z axis with constant
angular velocity. In terms of the z coordinate, the particle undergoes simple
harmonic motion, z(t) = a sin κt + b cos κt, with average value z = 0.

(e) The time for one rotation around the z axis is T = m/(2eµ). Suppose
κT = 2πn, i.e. λ = (2eµ2/m)n2. Then the period of rotation around the z
axis is an integer multiple of the simple harmonic oscillation in the z
direction, i.e. the two motions are in phase.

4 We start from the Euler-Lagrange equations for φ:

∂L
∂ϕ

=
∂

∂xµ

(

∂L
∂(∂ϕ/∂xµ)

)

≡ ∂µ

∂L
∂[∂µϕ]

,

which immediately gives

−m2ϕ = ∂µ∂µϕ ⇒ ∂µ∂µϕ + m2ϕ = 0 ⇒ ∂2ϕ

∂t2
−∇2ϕ + m2ϕ = 0.

The Fourier transformed field ϕ̃(k, t) is defined by

ϕ(x, t) =
∫

d3k ϕ̃(k, t) eik·x.

Substituting into the equation of motion gives

∂2ϕ̃

∂t2
+ (m2 + k2)ϕ̃ = 0.

Define ω = +
√

m2 + k2. Then

ϕ̃(k, t) = a(k)e−iωt + b(k)eiωt.

The reality of ϕ requires b(k) = a∗(−k). With

L =
1

2
(∂µϕ1)(∂µϕ1) −

1

2
m2ϕ2

1 +
1

2
(∂µϕ2)(∂µϕ2) −

1

2
m2ϕ2

2 + gϕ1ϕ2

we now have two equations of motion, corresponding to the E-L equations
corresponding to ϕ1 and ϕ2 respectively:

∂µ∂µϕ1 + m2ϕ1 − gϕ2 = 0, ∂µ∂µϕ2 + m2ϕ2 − gϕ1 = 0.

Now define two linear combinations of the ϕi fields: ϕ± = ϕ1 ± ϕ2. By adding and
subtracting the above two equations of motion, we obtain two corresponding
equations for the ϕ±:

∂µ∂µϕ+ + (m2 − g)ϕ+ = 0, ∂µ∂µϕ− + (m2 + g)ϕ− = 0.
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Note that these are now decoupled, and so we can solve them as we do for the
normal (massive) Klein-Gordon field. Thus

ϕ±(x, t) =
∫

d3k
[

a±(k)eik·x−iω±t + a∗

±
(k)e−ik·x+iω±t

]

where the frequencies ω± are given by

ω2
±

= k2 + m2 ∓ g > 0.

It is now straightforward to recover the solutions for ϕ1 and ϕ2:

ϕ1(x, t) =
∫

d3k N(k)
1

2

[

a+(k)eik·x−iω+t + a−(k)eik·x−iω−t + c.c.
]

,

ϕ2(x, t) =
∫

d3k N(k)
1

2

[

a+(k)eik·x−iω+t − a−(k)eik·x−iω−t + c.c.
]

.

To solve for the fields for the given boundary conditions at t = 0, we first
transform these into boundary conditions on ϕ±:

ϕ+(x, 0) = ϕ−(x, 0) = A sin(q · x), ϕ̇+(x, 0) = ϕ̇−(x, 0) = 0.

This suggests looking for real solutions of the form:

ϕ± = sin(q · x)[α cos(ω±t) + β sin(ω±t)]

where now ω± =
√

q2 + m2 ∓ g. Evidently the boundary conditions are satisfied
for α = A and β = 0. Hence

ϕ1(x, t) =
A

2
sin(q · x)[cos(ω+t) + cos(ω−t)],

ϕ2(x, t) =
A

2
sin(q · x)[cos(ω+t) − cos(ω−t)].

Note that in the limit g → 0, ϕ2 → 0.

5 The relationship between symmetries and conserved quantities, and the
effects of symmetry breaking, are amongst the most important in theoretical
physics. Noether’s theorem is an important general result, which tells us that there
is a conserved current associated with every continuous symmetry of the
Lagrangian, i.e. with symmetry under a transformation of the form ϕ → ϕ + δϕ
where δϕ is infinitesimal. Symmetry means that L does not change under this field
transformation.

δL =
∂L
∂ϕ

δϕ +
∂L
∂ϕ′

δϕ′ +
∂L
∂ϕ̇

δϕ̇ = 0
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where

δϕ′ = δ

(

∂ϕ

∂x

)

=
∂

∂x
δϕ

δϕ̇ = δ

(

∂ϕ

∂t

)

=
∂

∂t
δϕ

(easily generalized to 3 spatial dimensions).
The Euler-Lagrange equation of motion

∂L
∂ϕ

− ∂

∂x

(

∂L
∂ϕ′

)

− ∂

∂t

(

∂L
∂ϕ̇

)

= 0

then implies that

δL =
∂

∂x

(

∂L
∂ϕ′

)

δϕ +
∂L
∂ϕ′

∂

∂x
(δϕ) +

∂

∂t

(

∂L
∂ϕ̇

)

δϕ +
∂L
∂ϕ̇

∂

∂t
(δϕ) = 0

⇒ ∂

∂x

(

∂L
∂ϕ′

δϕ

)

+
∂

∂t

(

∂L
∂ϕ̇

δϕ

)

= 0

Comparing with the conservation/continuity equation (in 1 spatial
dimension)

∂

∂x
(Jx) +

∂ρ

∂t
= 0

we see that the conserved density and current are (proportional to)

ρ =
∂L
∂ϕ̇

δϕ , Jx =
∂L
∂ϕ′

δϕ

In more than 1 spatial dimension

Jx =
∂L

∂(∂ϕ/∂x)
δϕ , Jy =

∂L
∂(∂ϕ/∂y)

δϕ , . . .

and hence in covariant notation

Jµ =
∂L

∂(∂µϕ)
δϕ.

The Lagrangian density for a scalar field in n space-time dimensions,
ϕ(t, x1, x2, ..., xn−1), is

L =
1

2
(∂µϕ)(∂µϕ) − λϕ4.

We use the E-L equation in the form

∂L
∂ϕ

= ∂µ

∂L
∂[∂µϕ]

,
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to immediately obtain the equation of motion

∂µ∂µϕ + 4λφ3 = 0.

A current Jµ is defined by

Jµ = (ϕ + xν∂νϕ)∂µϕ − xµL.

Splitting this into two pieces, we first have

∂µ [(ϕ + xν∂νϕ)(∂µϕ)] = 2(∂µϕ)(∂µϕ) + xν(∂µ∂νϕ)(∂µϕ) + (ϕ + xν∂νϕ)(−4λϕ3),

where we have used the equation of motion in the last term. Also

∂µ(xµL) = nL − xµ
[

(∂µ∂νϕ)(∂µϕ) − 4λϕ3(∂µϕ)
]

.

Subtracting these and cancelling terms then gives

∂µJµ =
(

2 − n

2

)

(∂µϕ)(∂µϕ) + λϕ4(−4 + n) = (4 − n)L.

For n = 4 the right-hand side vanishes and the current is conserved.

6 (a) Taking the F.T in x we have
(

k2 + 2α
∂

∂t
+

1

c2

∂2

∂t2

)

G(k, t − t′) = δ(t − t′)

This can be solved either using the ‘jump’ condition method from 1B maths
or by taking a further F.T in t and using contour integration. The equation
is identical in form to the damped harmonic oscillator for which the full
solution is given in the lecture notes on pages 52,52, question 4 in the
examples and Q6 in the 2010 paper.

G(k, t − t′) = 0 t < t′

=
1

√

α2 − k2/c2
e−αc2(t−t′) sinh

√
α2c4 − k2c2(t − t′)

(b) From the inverse Fourier transform we have

G(x, x′; t, t′) =
1

2π

∫

∞

−∞

eik(x−x′)G(k, t − t′)dk

and with s(x, t) = cos(px)δ(t − t0)

T (x, t) =
∫ t+

−∞

dt′
∫

∞

−∞

dx′s(x′, t′)G(x, x′; t, t′)

=
∫

∞

−∞

dx′ cos(px′).
1

2π

∫

∞

−∞

dkeik(x−x′)G(k, t − t0)

=
∫

∞

−∞

dk
1

2.2π

∫

∞

−∞

dx′
[

ei(k−p)(x−x′)eipxG(k, t − t0) + ei(k+p)(x−x′)e−ipxG(k, t − t0)
]

=
1

2

(

eipxG(p, t − t0) + e−ipxG(−p, t − t0)
)

= cos(px)G(p, t − t0)
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Hence, for αc > p the oscillating temperature distribution decays without
oscillating and for αc < p it executes damped harmonic motion.

END OF PAPER
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