Theoretical Physics 1
Answers to Examination 2006 *2007*

Warning — these answers have been completely retyped...
Please report any typos/errors to emt1000@cam.ac.uk

Q1. Bookwork: the canonical momenta are \(p_i \equiv \partial L / \partial \dot{q}_i \). The Hamiltonian is

\[
H \equiv \sum_i p_i \dot{q}_i - L ,
\]

which is a function of \((q_i, p_i) \) but not \(\dot{q}_i \). Hamilton's equations are

\[
\dot{q}_i = \frac{\partial H}{\partial p_i} ; \quad \dot{p}_i = -\frac{\partial H}{\partial q_i} ,
\]

i.e. a set of \(2N \) first-order equations for the coordinates and momenta. For a charged particle we add the scalar \(-q(\phi - A \cdot \mathbf{x})\) to the Lagrangian. The canonical momentum is then \(\mathbf{p} = m \mathbf{x} + q \mathbf{A} \), but the Hamiltonian is still \(H = \frac{1}{2} m \mathbf{x}^2 + q \phi \). Expressed as a function of \(\mathbf{p} \) we have

\[
H = \frac{(\mathbf{p} - q \mathbf{A})^2}{2m} + q \phi \tag{8}
\]

The vector potential \((-By, 0, 0)\) has \(\nabla \times \mathbf{A} = (0, 0, B) \) as required and \(\mathbf{E} = -\nabla \phi \) as required.

The Hamiltonian is

\[
H = \frac{(p_x + qBy)^2}{2m} + \frac{p_y^2}{2m} + \frac{p_z^2}{2m} + \frac{1}{2} m \omega_0^2 y^2 .
\tag{4}
\]

It does not depend on \(x, z \) or \(t \), so \(p_x, p_z \) and \(H \) are constants of motion. The equations for \(p_y, x \) and \(y \) are

\[
\dot{p}_y = -\frac{\partial H}{\partial y} = -\frac{qB}{m} (p_x + qBy) - m \omega_0^2 y ;
\tag{2}
\]

\[
\dot{x} = \frac{\partial H}{\partial p_x} = \frac{p_x + qBy}{m} ;
\tag{1}
\]

\[
\dot{y} = \frac{\partial H}{\partial p_y} = \frac{p_y}{m} , \quad \dot{z} = \frac{qz}{m} .
\tag{1}
\]

Differentiating the \(\dot{y} \) equation and substituting we get the required result

\[
\ddot{y} + (\omega^2 + \omega_0^2) y = -\frac{\omega p_y}{m} \tag{3}
\]

where \(\omega = qB/m \), the Larmor frequency. This has general solution

\[
y = A \cos(\Omega t + \delta) - \frac{p_x}{m} \frac{\omega}{\Omega^2} \tag{1}
\]

(22 January 2007)
where A, δ are arbitrary constants and $\Omega^2 = \omega^2 + \omega_0^2$. Using this general solution we have
\[
\dot{x} = \omega \left[A \cos(\Omega t + \delta) - \frac{p_x}{m} \frac{\omega}{\Omega^2} \right] + \frac{p_x}{m}
\]
so that
\[
x = \frac{\omega}{\Omega} A \sin(\Omega t + \delta) - \frac{p_x}{\Omega^2} \frac{\omega^2}{m} t + \frac{p_x}{m} + \text{const}
\]
If we now apply the boundary condition $y = (v_x, 0, 0)$ at $t = 0$ and remove irrelevant constants we have
\[
x = \nu \frac{\omega^2}{\Omega} t + \beta \sin(\Omega t) \\
y = -\nu \frac{\omega}{\Omega^2} t + \beta \cos(\Omega t)
\]
Where $\nu = \frac{p_x}{m}$ and $\beta = v_x - \nu \omega_0 / \Omega$.

These solutions have a number of special cases. For $\beta = 0$ the trajectory in the x, y plane is a straight line with $y = -\nu \omega / \Omega^2$. For small β the trajectory is a sinusoidal oscillation around this value of y. Larger values of β produce a helical trajectory. For large B the kinetic energy in the x direction is quenched and the trajectory tends towards a closed circle.

Q2. Hamilton’s principle states that $\delta \int dt L(q, \dot{q}, t) = 0$ and leads to (via calculus of variations)
\[
\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) = \frac{\partial L}{\partial q}
\]
i.e. a collection of N 2nd order equations for the coordinates q_i.

The kinetic energy of the masses at B and B' is $2 \times \frac{1}{2} m_1 a^2 (\dot{\theta}^2 + \Omega^2 \sin^2 \theta)$.
The mass at A' has the velocity $2a \dot{\theta} \sin \theta$ and so contributes the kinetic energy $2m_2 a^2 \sin^2 \theta \dot{\theta}^2$. The potential energy is made of two contributions from the m_1 masses and one from m_2, giving $V = -ga \cos \theta (2m_1 + 2m_2)$. This gives the Lagrangian in question, $L = T - V$, with the only variable $\theta(t)$.

The corresponding canonical momentum $p = \partial L / \partial \dot{\theta} = a^2 \dot{\theta} (2m_1 + 4m_2 \sin^2 \theta)$.
The equation of motion is (note the partial cancellation of the $\dot{\theta}$ term)
\[
a^2 (2m_1 + 4m_2 \sin^2 \theta) \ddot{\theta} + 4a^2 m_2 \sin \theta \cos \theta \dot{\theta} = 2a \sin \theta (m_1 a \Omega^2 \cos \theta - g[m_1 + m_2])
\]
In equilibrium the l.h.s. is zero and so
\[
\cos \theta = \frac{g[m_1 + m_2]}{m_1 a \Omega^2}
\]

(22 January 2007)
The stable position has to be at $\theta = 0$ unless $\cos \theta_0 \leq 1$, which gives the critical spinning velocity

$$\Omega_c^2 = \frac{g(m_1 + m_2)}{m_1 a}$$

For small oscillations about $\theta = \theta_0$ we ignore the $\dot{\theta}^2$ term and expand the r.h.s. of the dynamic equation, obtaining

$$a(m_1 + 2m_2 \sin^2 \theta_0) \ddot{\theta} \approx \delta \theta (m_1 a \Omega^2 [\cos^2 \theta_0 - \sin^2 \theta_0] - g(m_1 + m_2) \cos \theta_0)$$

(7)

where $\delta \theta = \theta - \theta_0$ is the small deviation from equilibrium. Substituting $g(m_1 + m_2)$ from the expression above leads to cancellation of \cos^2 terms and the final equation

$$a(m_1 + 2m_2 \sin^2 \theta_0) \ddot{\theta} + m_1 a \Omega^2 \sin^2 \theta_0 \delta \theta$$

(8)

The frequency of the resulting small oscillations is, therefore, as given in the question.

Q3. First of all, let's write down the Lagrangian in the simplifying case. Now $(dx^0, dx^1) = (cdt, dx)$ and

$$g_{\mu\nu} = \begin{pmatrix} g(x) & 0 \\ 0 & -g(x) \end{pmatrix}$$

which gives, after multiplication under the root,

$$L = -m_0 \sqrt{c^2 g(x) - \dot{x}^2 g(x)} = -m_0 c \sqrt{g} \sqrt{1 - v^2 / c^2}$$

The l.h.s. of the Euler-Lagrange equation will then take the form

$$\frac{d}{dt} \left(m_0 \frac{\Gamma}{\sqrt{c^2 - \dot{x}^2}} \right) = \frac{d}{dt} \left(m_0 v \frac{\sqrt{g}}{\sqrt{c^2 - v^2}} \right)$$

(4)

(the factor following the $m_0 v$ is therefore denoted as Γ in the question. The r.h.s. is

$$\frac{\partial L}{\partial x} = -m_0 c \sqrt{1 - v^2 / c^2} \left(\frac{1}{2 \sqrt{g}} \frac{\partial g}{\partial x} \right) = -\frac{m_0}{\Gamma} \frac{\partial}{\partial x} \left[\frac{1}{2} \dot{g}(x) \right]$$

where ϕ is the expression in square brackets.

For the general case of $L = -m_0 \sqrt{g_{\mu\nu} \dot{x}^\mu \dot{x}^\nu}$ we just need to be careful with components and indices. For the three spatial components of the 4-vector variable, we'll have in the l.h.s. of the Euler-Lagrange equation:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}_i} \right) = \frac{d}{dt} \left(-\frac{2 g_{\mu \nu} \ddot{x}^\mu}{2 \sqrt{g_{\mu \nu} \dot{x}^\mu \dot{x}^\nu}} \right) = \frac{d}{dt} \left(\gamma g_{\mu \nu} \ddot{x}^\mu \right)$$

(22 January 2007)
Here \(i = (1, 2, 3) \) and \(\mu, \nu = (0, 1, 2, 3) \). Now evaluating the derivatives in the r.h.s. we should group terms together into \(\gamma = \frac{m_0}{\sqrt{g_{\mu\nu} \dot{x}^\mu \dot{x}^\nu}} \) (or, equivalently, without \(m_0 \) as this cancels on both sides of the linear equation):

\[
\frac{\partial L}{\partial x_i} = -m_0 \left(\frac{\partial g_{\mu\nu}}{\partial x_i} \dot{x}^\mu \dot{x}^\nu \right) \equiv \frac{1}{2} \gamma \left(\frac{\partial g_{\mu\nu}}{\partial x_i} \right) \dot{x}^\mu \dot{x}^\nu.
\]

Q4. The inverse transform is

\[
\rho(r) = \frac{1}{(2\pi)^3} \int_{-\infty}^{\infty} d^3k \ \hat{\rho}(k) \exp(-ik \cdot r)
\]

The relation between the Fourier transforms is

\[
|k|^2 \hat{\varphi} = \frac{\hat{\rho}}{\epsilon_0}
\]

so we can (in the absence of noise) find the potential via the relation

\[
\varphi(r) = \frac{1}{(2\pi)^2 \epsilon_0} \int_{-\infty}^{\infty} d^3k \ \frac{\hat{\rho}(k)}{|k|^2} \exp(-ik \cdot r)
\]

For the case \(\rho(r) = A \cos(Qx) \) for the layer \(-t \leq z \leq t\), we have the Fourier transform

\[
\hat{\rho}(x, y, z) = \int_{-t}^{t} dz \int_{-\infty}^{\infty} dy \int_{-\infty}^{\infty} dx \ A \cos(Qx) \exp(i(k_x x + k_y y + k_z z))
\]

Writing \(\cos(Qx) = \frac{1}{2} (\exp(iQx) + \exp(-iQx)) \), using

\[
\int_{-\infty}^{\infty} dx \ \exp(-ikx) = 2\pi \delta(k)
\]

for the \(x \) and \(y \) integrals and doing the \(z \) integral explicitly, we find

\[
\hat{\rho}(k) = (2\pi)^3 A \delta(k_y) \left(\delta(k_z - Q) + \delta(k_z + Q) \right) \frac{\sin(k_z t)}{k_z}.
\]

The back-transform is only required for \(y = z = 0 \) (the potential is independent of \(y \) anyway, but the variation in \(z \) is quite interesting...), so, after the trivial \(k_y \) integral, we have

\[
\varphi(x, 0, 0) = \frac{A}{2\pi \epsilon_0} \int_{-\infty}^{\infty} dk_z \int_{-\infty}^{\infty} dk_x \left(\delta(k_x - Q) + \delta(k_x + Q) \right) \frac{\sin(k_z t)}{k_z} \frac{\exp(-i(k_z x))}{k_z^2 + k_x^2 + Q^2}.
\]

Doing the \(k_x \) integral leaves

\[
\varphi(x, 0, 0) = \frac{A \cos(Qx)}{\pi \epsilon_0} \int_{-\infty}^{\infty} dk_z \frac{\sin(k_z t)}{k_z^2 + Q^2} = \frac{A \cos(Qx)}{\pi \epsilon_0} t^2 \frac{1}{2} \left(\frac{A}{t^2} \right).
\]

(22 January 2007)
using the definition of $I(a)$ given.

To do the integral, you can either write $\sin k = (\exp(ik) - \exp(-ik))/2i$ and close over the top for the first term and underneath for the second one, or express it as $\Im(\exp(ik))$ and just use the pole at $k = ia$, which has residue $\exp(-a)/2a^2$. There is a slight subtlety with the pole at the origin, which has residue $1/a^2$, but only contributes $\pi i \times$ residue because it is exactly on the path of integration.

The final answer is $\epsilon_0 \varphi(x, 0, 0) = A \cos(Qx) (1 - \exp(-Qt))/Q^2$.

Q5. We wish to evaluate

$$I = \int_{-1}^{1} \sqrt{1 - x^2} \, dx$$

using contour integration.

Consider $(z^2 - 1)^{1/2}$ with a branch cut from -1 to 1. For $z = x$ on the real axis, just above the cut we have

$$(z^2 - 1)^{1/2} = i\sqrt{1 - x^2}$$

Consider the contour C in the figure:

\[\oint (z^2 - 1)^{1/2} \, dz = \int_{-1}^{1} i\sqrt{1 - x^2} \, dx \]

$$= -2i I$$

We can deform the contour C to the contour C_R, the circle of radius R, as there are no singularities between C and C_R. Hence

$$I = \frac{1}{2i} \oint_{C_R} (z^2 - 1)^{1/2} \, dz = \int_{-1}^{1} i\sqrt{1 - x^2} \, dx$$

$$= -2i I$$

(22 January 2007) (TURN OVER)
Let \(\zeta = 1/z \), and let \(C_{1/R} \) be the circle of radius \(1/R \) traversed clockwise, so that \(C_{1/R} \) is the image of \(C_R \) under the transformation \(z \to \zeta \). Then
\[
z = -\zeta^{-2}d\zeta,
\]
s making the substitution
\[
I = \frac{1}{2i} \oint_{C_{1/R}} (\zeta^{-2} - 1)^{1/2}(-\zeta^{-2})d\zeta
\]

Now,
\[
(\zeta^{-2} - 1)^{1/2}(-\zeta^{-2}) = -\zeta^{-3}(1 - \frac{1}{2}\zeta^2 + \ldots)
\]
so the integrand has a singularity at \(\zeta = 0 \) with residue \(1/2 \). Therefore (introducing a minus sign because \(C_{1/R} \) is traversed in the negative sense),
\[
I = -\frac{1}{2i} \times 2\pi i \times \frac{1}{2} = \pi^{1/2}
\]

We wish to prove that
\[
\sum_{n=-\infty}^{\infty} \frac{1}{(a+n)^2} = \frac{\pi^2}{\sin^2\pi a}
\]
using the identity
\[
\oint_C \frac{\pi \cot \pi z}{(a+z)^2} dz = 0,
\]
The integrand of the identity has (i) simple poles at \(z = n \) where \(n \) is any integer and (ii) a double pole at \(z = -a \).

To find the residue of \(\cot \pi z \), put \(z = n + \xi \) for small \(\xi \):
\[
\cot \pi z = \frac{\cos(n\pi + \xi\pi)}{\sin(n\pi + \xi\pi)} \approx \frac{\cos n\pi}{(\cos n\pi)\xi} = \frac{1}{\xi}
\]
The residue of the integrand at \(z = n \) is thus \(\pi(a+n)^{-2}\pi^{-1} \).

Putting \(z = -1 + \xi \) for small \(\xi \) and determining the coefficient of \(\xi^{-1} \)
\[
\frac{\pi \cot \pi z}{(a+z)^2} = \frac{\pi}{\xi^2} \cot(-a\pi + \xi\pi)
\]
\[
= \frac{\pi}{\xi^2} \left\{ \cot(-a\pi) + \xi \left[\frac{d}{dz} \cot \pi z \right]_{z=-a} + \ldots \right\}
\]
so that the residue at the double pole \(z = -a \) is
\[
\pi \left[-\pi \csc^2 \pi z \right]_{z=-a} = -\pi^2 \csc^2 \pi a.
\]

(22 January 2007)
Collecting together these terms and using the residue theorem gives

\[I = \oint_C \frac{\pi \cot \pi z}{(a + z)^2} \, dz = 2\pi i \left[\sum_{n=-N}^{N} \frac{1}{(a + n)^2} - \pi^2 \csc^2 \pi a \right] \]

where \(N \) equals the integer part of \(R \). But as the radius \(R \) of \(C \) tends to \(\infty \), \(\cot \pi z \to \pm i \) (depending on whether \(\Im(z) \) is greater or less than zero respectively. Hence,

\[I < \int k \frac{\, d}{(a + z)^2} \]

which tends to zero as \(R \to \infty \). Thus \(I \to 0 \) as \(R \) (and hence \(N \to \infty \). We therefore have

\[\sum_{n=-\infty}^{\infty} \frac{1}{(a + n)^2} = \frac{\pi^2}{\sin^2 \pi a} \]

Q6. Need to describe, for a discrete one-dimensional process with length scale \(a \) and timescale \(\tau \), the idea that the transitions rates into \(P_{N+1}(m) \) are given by \(w(m, m')P_N(m') \).

Principle of detailed balance is then \(w(m, m')P(m') = w(m', m)P(m) \) for each pair \(m, m' \).

The idea of the derivation presented in the notes was to consider the case when transitions are made only from \(m \) to \(m \pm 1 \), so that

\[P_{N+1}(m) = w(m, m + 1)P_N(m + 1) - w(m + 1, m)P_N(m) + w(m, m - 1)P_N(m - 1) - w(m - 1, m)P_N(m) \]

If the diffusion is symmetric \(w = 1/2 \), and we get the diffusion equation with coefficient \(D = a^2/\tau \)

If there is a vertical asymmetry due to gravity, then transitions to \(k - 1 \) are preferred over those to \(k + 1 \), giving the first-derivative term in

\[\frac{\partial P}{\partial t} = \frac{1}{2}D \left(\frac{\partial^2 P}{\partial z^2} + \frac{mg}{k_B T} \frac{\partial P}{\partial z} \right) \]

The argument leading to the coefficient on this term will probably be circular (appeal to Boltzmann factors...), but never mind. An alternative is to use the formal Fokker-Planck equation derivation for a constant force \(F = mg \).

The steady-state solution of this equation is

\[P(z) \propto \exp(-\frac{mgz}{kT}) \]

The critical size of particle is that for which \(\frac{mga}{kT} \sim 1 \). Evaluating this for the given parameters we find \(a \sim 10^{-6} \) m.

(22 January 2007)

(TURN OVER)