THEORETICAL PHYSICS I

Answer three questions only. The approximate number of marks allotted to each part of a question is indicated in the right margin where appropriate. The paper contains 4 sides and is accompanied by a book giving values of constants and containing mathematical formulae which you may quote without proof.

1 A dynamical system has position co-ordinates \(q_i \) and canonical momenta \(p_i \). Write the Hamiltonian \(H(q_i, p_i, t) \) in terms of the system Lagrangian \(L(q_i, \dot{q}_i, t) \) and these quantities. A non-relativistic particle of mass \(m \) and charge \(q \) moves in an electromagnetic field produced by an electrostatic potential \(\phi \) and magnetic vector potential \(A \). Show that the Hamiltonian is

\[
H = \frac{|p - qA|^2}{2m} + q\phi.
\]

In Cartesian coordinates \((x, y, z)\) the electric field is \(E = (0, -m\omega_0^2 y, 0) \) and the magnetic field is \(B = (0, 0, B) \). Show that \(\phi = m\omega_0^2 y^2/2, A = (-By, 0, 0) \) are suitable choices for the potentials.

For a particle moving in this field, show that the momenta \(p_x, p_z \) and the Hamiltonian \(H \) are constants of the motion.

Find Hamilton’s equations of motion for the variables \(p_y, x, y \) and \(z \) and show that

\[
\ddot{y} + (\omega^2 + \omega_0^2)y = \frac{p_y}{m},
\]

where \(\omega \equiv qB/m \).

Hence find the general solutions for \(x(t), y(t) \) and describe the motion in the \(x, y \) plane of a particle initially moving with velocity \(v = (v_x, 0, 0) \).

2 Describe briefly how the principle of least action leads to Lagrange’s equations of motion for a dynamical system having coordinates and velocities \((q_i, \dot{q}_i)\).

A mechanical governor used to control the speed of a steam engine consists of the configuration shown in the figure:
(i) the vertical axis AA' rotates at a constant angular velocity Ω;
(ii) light rods $AB, AB', A'B, A'B'$ each of length a are freely pivoted at A, B, A', B';
(iii) the pivot at A is fixed, so that the pivot at A' moves as the angle θ changes;
(iv) masses m_1 are attached at B and B' and a mass m_2 is free to slide on the vertical axis at A'.

Show that the Lagrangian of the system is given by

$$L = m_1 a^2 (\Omega^2 \sin^2 \theta + \dot{\theta}^2) + 2m_2 a^2 \dot{\theta}^2 \sin^2 \theta + 2ag \cos \theta (m_1 + m_2).$$

Find the equation of motion of the system.

Show that the system can rotate in equilibrium with $\theta = 0$ unless Ω exceeds a certain critical velocity. Determine the equilibrium angle θ_0 for the case when Ω is greater than this critical value.

Show that the angular frequency of small oscillations about the equilibrium angle θ_0 is given by $\Omega \sin \theta_0 / \sqrt{1 + 2(m_2/m_1) \sin^2 \theta_0}$.

3 Consider the following generalisation of the Lagrangian for a simple relativistic particle:

$$L = -m_0 \sqrt{g_{\mu\nu} \frac{dx^\mu}{dt} \frac{dx^\nu}{dt}},$$

where $(dx^0, dx^1, dx^2, dx^3) = (c dt, dx, dy, dz)$, and $g_{\mu\nu}$ is a symmetric tensor which varies with position and time, and m_0 is a constant.

For the simplifying case of only time plus one dimension of space, with $g_{00} = -g_{11} = g(x)$, independent of time, and also $g_{10} = g_{01} = 0$, show that the Euler-Lagrangian equations reduce to the form

$$\frac{d}{dt}(\Gamma m_0 v) = -\frac{m_0}{\Gamma} \frac{\partial \phi}{\partial x},$$

and give an explicit expression for the function Γ and the potential ϕ in terms of $g(x)$ and $v = dx/dt$.

For the general case show that the equations of motion are given by

$$\frac{d}{dt} \left(\gamma g_{k\nu} \frac{dx^\nu}{dt} \right) = \frac{1}{2} \gamma \frac{g_{\mu\nu}}{dt} \frac{dx^\mu}{dt} \frac{\partial g_{\mu\nu}}{\partial x^k},$$

giving the explicit expression for γ and indicating carefully what values are taken by the indices k, μ, ν.

The three-dimensional Fourier transform of an electric charge density distribution $\rho(r)$ can be written as

$$\tilde{\rho}(k) \equiv \int d^3r \, \rho(r) \exp(ik \cdot r).$$

Write down the formula for the inverse Fourier transform.

If it is placed within a dielectric medium with dielectric constant ϵ_0 the associated electrostatic potential $\varphi(r)$ is determined by the Poisson equation

$$\nabla^2 \varphi = \frac{-\rho}{\epsilon_0}.$$

Find the relationship between the Fourier transforms $\tilde{\rho}(k)$ and $\tilde{\varphi}(k)$. Explain how the potential can be found in terms of an integral over k if the charge density is known.

A uniform metallic layer occupying the region $-t \leq z \leq t$ and extending infinitely in the x, y plane is embedded in a dielectric medium with $\epsilon_0 = 1$. A charge density wave $\rho(r) = A \cos(Qx)$ is set up in the layer by perturbing the electron distribution. Calculate the Fourier transform $\tilde{\rho}(k)$, where $k = (k_x, k_y, k_z)$.

Calculate the potential at the point $(x, 0, 0)$, expressing the answer in terms of $I(a)$, where

$$I(a) \equiv \int_{-\infty}^{\infty} dk \, \frac{\sin k}{(a^2 + k^2)k}.$$

By using a contour integral, show that

$$I(a) = \frac{\pi}{a^2} (1 - \exp(-a)).$$

Describe how the Cauchy integral theorem can be used to evaluate contour integrals in the complex plane. Illustrate your answer by showing that

$$\int_{-1}^{1} \sqrt{1 - x^4} \, dx = \frac{\pi}{2}.$$

(Hint: you may find it useful to note that the integrand has a pole at $x \to \infty$ and a branch cut between $x = -1..1$)

The Cauchy integral theorem can be used to evaluate infinite series. By considering the identity

$$\oint_C \frac{\pi \cotan \pi z}{(a + z)^2} \, dz = 0,$$

where the contour C is a circle of infinite radius in the complex plane centered about $z = 0$, show that

$$\sum_{n=-\infty}^{\infty} \frac{1}{(a + n)^2} = \frac{\pi^2}{\sin^2 \pi a}.$$
Discuss the concept of discrete transition probability $w(k, k')$ for a discrete one-dimensional random walk.

Consider an ensemble of small identical spherical Brownian particles, of radius a and density ρ, suspended in a container filled with water (density ρ_0). Derive the modified diffusion equation for the probability $P(z, t)$ of finding a particle at a height z taking into account only first-order corrections in powers of $\frac{\tilde{m} ga}{k_B T}$ (assumed small):

$$\frac{\partial P}{\partial t} = \frac{1}{2} D \left(\frac{\partial^2 P}{\partial z^2} + \frac{\tilde{m} g}{k_B T} \frac{\partial P}{\partial z} \right)$$

where $\tilde{m} = 4\pi (\rho - \rho_0) a^3 / 3$.

Derive the equilibrium Boltzmann distribution of these particles along the vertical z-axis.

For $\rho = 1.1 \times 10^3$ kg m$^{-3}$ and $\rho_0 = 1 \times 10^3$ kg m$^{-3}$ estimate the order of magnitude of the radius a of a particle for which the effect of Brownian diffusion is relevant, such that the trajectory of moving particle deviates significantly from a straight line.

[At room temperature $k_B T \sim 4 \times 10^{-21}$ J.]