TP1-04

Theoretical Physics 1
Answers to Examination 2004

Warning — these answers have been completely retyped. . .
Please report any typos/errors to emt1000@Qcam.ac.uk
Q1. The Lagrangian, depending on positions and velocities of all particles is
M
L= —R2 Z R? — (1)

A brief discussion of L =T — U, depending on q, q should be here. The
(holonomic) constraint of fixed centre of mass reads:

MR—i—mZRa:O. (2)
In suggested relative coordinates, r, = R, — R, one can directly express
m
M R a=0, R=———+— o 3
(M + mn) +m§r or M+mn;r (3)

Substituting this into the Lagrangian and expanding the square under the
sum, after two lines of algebra we can obtain

Z ; 2M7—7:mn (Z%) -U (4)

«

which only has n independent variables r,. The canonical momenta are
obtained directly:

oL m?
pa—ava‘m”a‘m@”ﬂ)- (5)

The Hamiltonian is, by definition, H = }__, p.To — L, but in order to
complete the change of variables to (p,,7,) we need to express v, = 7, from
eq.(5). This may be done in many ways, one is to sum the eq.(5) over a to
express 3., Pa = 11 +mn Yo Vo After this, one easily obtains

= pat (Z pﬁ) ()

B

and, after substitution into the definition of Hamiltonian and another line of
algebra, the final result:

- Sw g () U )

«

(There are simpler ways of obtaining this expression directly.)
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Q2. You may or may not remember that the relevant angular velocity in this case

is equal to (92 + sin? 6 gz52) The hint is designed to help those who don’t: the
full kinetic energy is %1'19% + %[293 + %139?)’, in principal axes. With
I, =1, =1, and I3 = 0 the Lagrangian reads:

1. : 1
L= 5&(62 + sin®  ¢*) — 5Wsin 0/2)* (8)

K(Az)?.

[since the potential energy U = %

Canonical momenta;:

pe = 1.0 (9)

Py = IJ_nglIl2 0, SO QZ5 = m
The Hamiltonian:
P2 P2 i
H=2 0 4 0 4 2p26in?¢/2 (10)

C 21, 2[sin?f 2
The Hamilton equations (p = —0H/0q, ¢ = 0H/Jp take the form:

. pi cos  kl?sinb
b= I, sin®0 4
Py = 0 (11)

(the second equation suggests the conservation of z-angular momentum, but
it is not equivalent to saying phi =const).

Substituting the eq.(9) into this, we can obtain the dynamic equation

2

1,0 =sin6 [ILQ%Q cosf — Kj] (12)

The steady state is possible when the bracket in the r.h.s. is held at zero.
For a constant ¢ = (2 this is achieved when
k(2 3K

cosfy = VR = ey, <1 (13)

(in this stable equilibrium state § =const=0).

To find the small oscillations about this equilibrium, expand the r.h.s. in
powers of small deviation: 6 = 6y + A(t). It is easier than it may look,

because only the leading, linear term is required. The result is
. 5 . ) 9k
A = —AQ*sin 00 = —-AQ 1-— W . (14)
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Q3. For the constant force F', the potential energy is U = —F¢ (giving the

coordinate the name ¢). The relativistic Lagrangian function is 8]
2
L=-"C U= _me?/1- ¢/ + Fq (15)
8

(writing the kinetic energy from memory would be sufficient, but you can
derive it, if you've forgotten its form).

Straight from the lecture notes and exercises, the canonical momentum is

oL mov ) p?
p= e ——, S0V = 5o
9 102/ moe” +p
Substituting this into the Hamiltonian, H = p§ — L, you will easily obtain 8]

H=c\/p>+mic2 — Fq, so & = myc (16)

To prove the energy conservation (which you expect, since no explicit time
dependence is present), you must write the full derivative

dH  OH . n OH .

dt g a op~

This is zero when the Hamilton equations hold: 4]
0H
) = —— =F 17
p 9 (17)
0H cp

g = 2L __ P
dp /p? + m2c2

The first equation integrates directly, to give p = F't (with the given initial
condition). Substituting this p = p(t) into the second equation, we obtain

cFt dt
0=/

\ F22 + mgcQ.

The integration is very easy; taking care of the initial condition ¢(0) = 0

gives the answer 8]
2 272
mocC F?t
= -1 1 18
4 F [ T m%cQ] (18)
The time derivative of this looks a bit messy, but in the limits of short and
long time it takes the expected forms: [6]
2.3
v (Ffmo)t (b 25)  vme— 20 (t—oc)  (19)

(just declaring that v ~ ¢ would do as well).
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Q4. The first step is to Fourier-transform the force in the r.h.s. Please don’t be
confused by the (much more complicated) FT of the step-function that was
discussed in the lectures. The problem to overcome there, and the 1/w
singularity, is due to the infinite limit of integration of oscillating function —
but here we have a completely regular expression:

/ foetdt = Zf“( wa _ 1),

Accordingly, the required expression for z, = G f, is 8]
1 Zf()
. wa 1 20
To = 2y iwy — Q2 w W€ ) (20)

The discussion of contour integration and causality must include the

arguments about closing the contour in the integral x(t) = [°° z,e”“!dw/27

in the top- or bottom-half plane and how the result is related to the position

of singularities on the complex plane. 8]

In this problem, we have:

B (1 —e“ve ™ dw
=) = _Zfo/ w(w? + iwy — Q2) 21 (21)

It may look like there is a pole at w = 0, but in fact the force f, is
completely regular at this point. Only the two simple poles of the Green
function matter in the bottom half-plane, at wy » = —%z”y + /0% — iy?

However, the closing of the contour with w = —Re®® is only clear-cut when

t —a > 0. At shorter times (while the force f(t) is still present), the two
exponentials in the numerator have to be treated separately: one requires the
closure in the bottom-, the other in the top-half plane. Once they are

separated (the bracket (1 — e¢™®) expanded), the point w = 0 becomes an

issue — it will require a careful treatment since the contour passes through

this singularity. Yo do not need to do this, just outlining the points above is

all that’s required. 8]

When t > a the closing of integration contour in the bottom half-plane is
unambiguous (note the contour direction is clockwise) and the result is

1— wia) ,—twit 1— iwoa\ ,—twat 1

oft) = ifutem) (U BT L

wy(wy — wo) wo(wy — wy) 2

After a little bit of algebra (pulling out the common factors and uniting
trigonometric functions), the full result is

xr = —mf% (ebt sin \/ QZ — i"yt — 67%7@7(]‘) Sin \/ QQ — i"}/(t — Cl))
_J;cz);Y <6_%7t cos /2 — Iyt — e 27079 co5, /02 — (- a)> . (22)
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The limit ¢ > a is all that’s required. It can be implemented (the expansion,
retaining only the leading term — the result is zero at a — 0) at any stage,
giving the final approximate result

;Lfo e 2%8111\/92—1’}/1;

The first integration is very easy, but you need to draw the complex plane
and the contours on it. We need to evaluate

Y ef(x) dx

lim —

e—0 J_o ([L‘ — y)2 + 62 m
The denominator has two roots at ;o = y + i€, above and below the real
axis.

You can close the contour with a semi-circle at R — oo in either of the
half-planes, taking care of the direction of the contour and the resulting sign.
In both cases only one pole would be encircled.

The upper half-plane contour gives

TRPYRAC) e 0]

e—0 T — X9 P 2i€

= f(y)

as required.

The second integration is not trivial at all, but the two hints should guide
you. Write the product of two gamma functions as a double integral over

dt ds: - -
F(@)(1l—-2) = / tx_le_tdt/ s=el=1e=5(s |
0 0
The recommended substitution does wonders

// um_le_usSx_lsdus_me_st:/ u*te ) dsdu (23)
0 0

The first step is achieved by integrating over s.

It is necessary to design a contour such as shown in the question because we
need to evaluate the integral between 0 and co. (You may equivalently
choose a contour with the cut along the positive axis and the original
integral with the pole at u = —1, but the one suggested gives the easier value
of residue.) The whole close-contour integral

x—1
7{ - dz = —2mi.
1

—Z
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It consists of two integrals over the big and the small circles, both tending to
zero for 0 < z < 1, and two integrals along the cut (with 2z = ue*"):

T Rx ipx ¢ / uE~ 1 zwzdu / T ¢ ezd)m dgb /R ur 1 —zwxdu

1+u
- - 00 ¥~ 1du
— —iTr _ _imx — —9275 (24
(e e )/0 T a i (24)

Identifying the sin rz and dividing through, the required result is obtained. [14]

Q6. The first two parts are straight from the lecture notes: The description of
terms should include the mention of dynamic and stochastic forces and the
statistical properties of white noise A(t), its second moment is either " or
defined as 1, with the prefactor GX = v/T'. For the free Brownian particle:
v = —yv + A(t). Strictly, there are two Langevin equations (the second is
& = v) but with no potential forces, the first is sufficient. 6]

To get full marks here you need to mention the steps of derivation: continuity
equation for f4, substitution of v, Taylor expansion of the exponential

containing A(t), averaging over the stochastic force, Wick’s theorem, etc. 6]
If you identified all the terms correctly, then the F-P equation is written for
you (it is also (8.27) in the course handout booklet): 8]
Of(v,t 0 r 82 f
WD _ 2o+ 5oL (25)

To obtain the classical diffusion equation you do need the coordinate
dependence (see above). Either from the full (x, v)-description, substituting
the Maxwell f(v), or separately starting from describing the overdamped
motion and a "new” Langevin eqn, v& = A(t), you should be able to write
down 6]
T 2
({ﬁg’t):wg;; , soD=T/y (26)

Returning back to the eq.(25) and setting its Lh.s. to zero you can easily
integrate to obtain the equilibrium f(v) [with no net velocity, which would
arise from an integration constant|:

d, 2
7f = —%vd’v, f o< exp [—%Uz} )
Identifying the exponent with —Imw?/kT, you obtain 8]
I'= M and D = %—T
m ym
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