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NATURAL SCIENCES TRIPOS Part II

Wednesday 17 January 2001 10.30am to 12.30pm

THEORETICAL PHYSICS I

Answer three questions only. The approximate number of marks
allotted to each part of a question is indicated in the right margin
where appropriate. The paper contains 4 sides and is accompanied
by a book giving values of constants and containing mathematical
formulae which you may quote without proof.

1 Describe briefly how Hamilton’s principle of least action leads to Lagrange’s

equations of motion for a dynamical system having coordinates and velocities

(.. G
A mechanical governor used to control the speed of a steam engine consists

of the configuration shown in the figure:

(i) the vertical axis AA’ rotates at a constant
angular velocity (2;

(ii) light rods AB, AB', A’'B, A’B' each of
length a are freely pivoted at A, B, A’, B';

(iii) the pivot at A is fixed, so that the pivot at
A’ moves as the angle # changes;

(iv) masses m, are attached at B and B’ and
a mass me 1s free to slide on the vertical
axis at A’

Show that the Lagrangian of the system is given by

— 2002 oinn2 2 257 . 2
L =mya*(2°sin” 0 + 0 ) + 2moa“0 sin” 0 + 2ag cos @ (my + my) . [6]

Find the equation of motion of the system. [7]
Show that the system can rotate in equilibrium with # = 0 unless {2 exceeds
a certain critical velocity. Determine the equilibrium angle 6, for the case when (2

is greater than this critical value. 8]
Show that the angular frequency of small oscillations about the equilibrium
angle 6 is given by {2 sin 90/\/1 + 2(ma/my ) sin® 6. [7]
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2 A dynamical system has Lagrangian L(g;, G;,t). Define the conjugate
momenta p; and the Hamiltonian H(q;, p;, t). Write down Hamilton’s equations of
motion for the system.

A particle of mass m moves in a spherically symmetric potential V(7). Write
down the Lagrangian using spherical polar coordinates (r, 6, ¢) and find the
conjugate momenta (p,, pg, py). Find the Hamiltonian H, expressing it in terms of
the conjugate momenta and coordinates.

Show that p, is a constant of the motion but that, in general, py is not.

.2 .2

Write J2 = m?r*(0 + ¢ sin?#6) in terms of the canonical momenta and
coordinates. Hence show that J? is another constant of the motion.

Suppose that an additional dipole field is present, so that the potential then

has the form
Acos0

r2

V(r,0) = Vo(r) +

What can you say about the variation of p, and J?? In particular:
(a) how does J? depend on 67

(b) Can you find a new conserved quantity that reduces to J? for A = 0?
3 Show that the Lagrangian

Moc?
Y

L=- —U(r)
gives the Euler-Lagrange equations for the motion of a relativistic particle of rest
mass myg in a potential U(r), where v = (1 — |7 |?/c?)~1/2.

Write down L for planar orbits in a central potential U(r) using plane polar
coordinates (r, ). Explain which features of L lead to the conservation laws

ymer2f = J = constant
ymoc> + U(r) = FE = constant

Using these conservation laws, show that the equation of the orbit is

(d <1>>2+l (B = U(r)* —mie"

o \r r2 - J2c?

For the case U(r) = —K/r, where K is a positive constant, find the value of
« such that the orbit has the form

l=r(1+ecosab),

where [ and € are further constants.
[The equation (du/df)? + o*(u — ug)*> = A?a? has the solution u = ug + A cos(af).]

8]

[6]
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4 An electric charge density distribution p(r) has the three-dimensional
Fourier transform

= /d3'r p(r) exp(ik-r) .

Write down the formula for the inverse Fourier transform.
The electrostatic potential ¢(7) is determined by the Poisson equation

Determine the relationship between the Fourier transforms p(k) and @(k). Explain
how the potential can be found in terms of an integral over k if the charge density
is known.

A thin film of caesium metal, deposited on a substrate having dielectric
constant equal to unity, occupies the region —t < z <t and extends infinitely in x
and y. A charge density wave p(r) = A cos(Qx) is set up in the layer by
perturbing the electron distribution. Calculate the Fourier transform p(k), where
k= (kg ky k).

Calculate the potential at the point (z,0,0), expressing the answer in terms

of I(a), where
sin k
dk :
0= )L G

By using a contour integral, show that

I(a) = 55 (1 exp(-a)) .

a

D Consider a one-dimensional quantum system described by a Hamiltonian H.
Describe how a propagator G(z,2’;t) can be used to determine the wavefunction
U(x,t) at time ¢ from the initial wavefunction ¥(z,0) at ¢ = 0.

By expanding the wave function ¥(z,1) in terms of a complete set of
normalised eigenfunctions, ’Hqﬁn = E,¢,, such that, ¥(x,t) = ¥, cpdpe” /",
verify that the propagator can be written as

G(z,2';t) Zqﬁn _IE"t/h fort > 0.

Give an account of the path-integral representation of the quantum
propagator G(x,z';t). Discuss also the behaviour of the propagator in the classical
limit 7 — 0.
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6 A system with one coordinate ¢ is displaced at time ¢ = 0 from its
equilibrium position ¢ = 0 to a position @)y. Thereafter, the probability density
P(q,t) that it is to be found at position ¢ at time ¢ satisfies the evolution

(Fokker-Planck) equation
oP o*P 9 ( _0oU
C oplZ 2 pEE
ot <8q2+8q< 8q)) |

where U is a potential function and D a diffusion coefficient. Near equilibrium, the
potential can be expressed as a quadratic form U = %an, where « is a constant.
By setting OP/0t = 0, verify that the equilibrium probability distribution is
a Gaussian of mean (¢) = 0 and variance <(q - <q>2> =1/a. [8]
Throughout the approach to equilibrium the probability distribution always
has the Gaussian form

Plg,1) = ﬁ(t) expl—(q — Q1)) /2A(1)] .

where the only time-dependent quantities are the mean Q(t) and the variance A(t).
Substitute this Gaussian form into the evolution equation and verify directly

that the term on the LHS can be expressed as

or _ [(_1+ (q—Q)Q) 1dA  (¢-Q)dQ

= P.
2A di A 8]

ot A
By developing similar expressions for the terms on the RHS of the evolution

equation and comparing powers of ¢, show that the mean ((¢) and the variance
A(t) evolve according to the ordinary differential equations:

d@

_v D —

& + Da@) 0
dA
E‘FQDO!A = 2D [10]

Using the boundary conditions Q(0) = Qy, A(0) = 0, solve these equations
for Q(t) and A(t). 6]



