Wednesday 17 January 2001

10.30am to 12.30pm

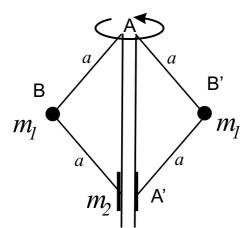
THEORETICAL PHYSICS I

Answer three questions only. The approximate number of marks allotted to each part of a question is indicated in the right margin where appropriate. The paper contains 4 sides and is accompanied by a book giving values of constants and containing mathematical formulae which you may quote without proof.

Describe briefly how Hamilton's principle of least action leads to Lagrange's equations of motion for a dynamical system having coordinates and velocities (q_i, \dot{q}_i) .

[6]

A mechanical governor used to control the speed of a steam engine consists of the configuration shown in the figure:



- (i) the vertical axis AA' rotates at a constant angular velocity Ω ;
- (ii) light rods AB, AB', A'B, A'B' each of length a are freely pivoted at A, B, A', B';
- (iii) the pivot at A is fixed, so that the pivot at A' moves as the angle θ changes;
- (iv) masses m_1 are attached at B and B' and a mass m_2 is free to slide on the vertical axis at A'.

Show that the Lagrangian of the system is given by

$$L = m_1 a^2 (\Omega^2 \sin^2 \theta + \dot{\theta}^2) + 2m_2 a^2 \dot{\theta}^2 \sin^2 \theta + 2ag \cos \theta (m_1 + m_2) .$$
 [6]

Find the equation of motion of the system.

[7]

Show that the system can rotate in equilibrium with $\theta = 0$ unless Ω exceeds a certain critical velocity. Determine the equilibrium angle θ_0 for the case when Ω is greater than this critical value.

[8]

Show that the angular frequency of small oscillations about the equilibrium angle θ_0 is given by $\Omega \sin \theta_0 / \sqrt{1 + 2(m_2/m_1) \sin^2 \theta_0}$.

[7]

(TURN OVER

2 A dynamical system has Lagrangian $L(q_i, \dot{q}_i, t)$. Define the conjugate momenta p_i and the Hamiltonian $H(q_i, p_i, t)$. Write down Hamilton's equations of motion for the system.

[6]

A particle of mass m moves in a spherically symmetric potential V(r). Write down the Lagrangian using spherical polar coordinates (r, θ, ϕ) and find the conjugate momenta (p_r, p_θ, p_ϕ) . Find the Hamiltonian H, expressing it in terms of the conjugate momenta and coordinates.

[6]

Show that p_{ϕ} is a constant of the motion but that, in general, p_{θ} is not.

[4]

Write $J^2 \equiv m^2 r^4 (\dot{\theta}^2 + \dot{\phi}^2 \sin^2 \theta)$ in terms of the canonical momenta and coordinates. Hence show that J^2 is another constant of the motion.

[10]

Suppose that an additional dipole field is present, so that the potential then has the form

 $V(r, \theta) = V_0(r) + \frac{A\cos\theta}{r^2}$

What can you say about the variation of p_{ϕ} and J^2 ? In particular:

- (a) how does J^2 depend on θ ?
- (b) Can you find a new conserved quantity that reduces to J^2 for A = 0? [8]
- 3 Show that the Lagrangian

$$L = -\frac{m_0 c^2}{\gamma} - U(r)$$

gives the Euler-Lagrange equations for the motion of a relativistic particle of rest mass m_0 in a potential $U(\mathbf{r})$, where $\gamma \equiv (1 - |\dot{\mathbf{r}}|^2/c^2)^{-1/2}$.

[6]

Write down L for planar orbits in a central potential U(r) using plane polar coordinates (r, θ) . Explain which features of L lead to the conservation laws

$$\gamma m_0 r^2 \dot{\theta} = J = \text{constant}$$

 $\gamma m_0 c^2 + U(r) = E = \text{constant}$ [8]

Using these conservation laws, show that the equation of the orbit is

$$\left(\frac{\mathrm{d}}{\mathrm{d}\theta} \left(\frac{1}{r}\right)\right)^2 + \frac{1}{r^2} = \frac{(E - U(r))^2 - m_0^2 c^4}{J^2 c^2} \ . \tag{12}$$

For the case U(r) = -K/r, where K is a positive constant, find the value of α such that the orbit has the form

$$l = r(1 + \epsilon \cos \alpha \theta) ,$$

where l and ϵ are further constants. [8] [The equation $(du/d\theta)^2 + \alpha^2(u - u_0)^2 = A^2\alpha^2$ has the solution $u = u_0 + A\cos(\alpha\theta)$.]

4 An electric charge density distribution $\rho(\mathbf{r})$ has the three-dimensional Fourier transform

 $\widetilde{
ho}(m{k}) \equiv \int \mathrm{d}^3 m{r} \;
ho(m{r}) \exp(\mathrm{i} m{k} \cdot m{r}) \; .$

Write down the formula for the inverse Fourier transform.

The electrostatic potential $\varphi(\mathbf{r})$ is determined by the Poisson equation

$$\nabla^2 \varphi = -\frac{\rho}{\epsilon_0} \ .$$

Determine the relationship between the Fourier transforms $\tilde{\rho}(\mathbf{k})$ and $\tilde{\varphi}(\mathbf{k})$. Explain how the potential can be found in terms of an integral over \mathbf{k} if the charge density is known.

A thin film of caesium metal, deposited on a substrate having dielectric constant equal to unity, occupies the region $-t \le z \le t$ and extends infinitely in x and y. A charge density wave $\rho(\mathbf{r}) = A\cos(Qx)$ is set up in the layer by perturbing the electron distribution. Calculate the Fourier transform $\tilde{\rho}(\mathbf{k})$, where $\mathbf{k} \equiv (k_x, k_y, k_z)$.

Calculate the potential at the point (x, 0, 0), expressing the answer in terms of I(a), where

$$I(a) \equiv \int_{-\infty}^{\infty} dk \, \frac{\sin k}{(a^2 + k^2)k} .$$
 [5]

By using a contour integral, show that

$$I(a) = \frac{\pi}{a^2} (1 - \exp(-a))$$
 [7]

Consider a one-dimensional quantum system described by a Hamiltonian \mathcal{H} . Describe how a propagator G(x, x'; t) can be used to determine the wavefunction $\Psi(x, t)$ at time t from the initial wavefunction $\Psi(x, 0)$ at t = 0.

By expanding the wave function $\Psi(x,t)$ in terms of a complete set of normalised eigenfunctions, $\widehat{\mathcal{H}} \phi_n = E_n \phi_n$, such that, $\Psi(x,t) = \sum_n c_n \phi_n e^{-iE_n t/\hbar}$, verify that the propagator can be written as

$$G(x, x'; t) = \sum_{n} \phi_n(x) \phi_n^*(x') e^{-iE_n t/\hbar}$$
 for $t > 0$. [12]

Give an account of the path-integral representation of the quantum propagator G(x, x'; t). Discuss also the behaviour of the propagator in the classical limit $\hbar \to 0$. [14]

(TURN OVER

[4]

[8]

[10]

[8]

A system with one coordinate q is displaced at time t = 0 from its equilibrium position q = 0 to a position Q_0 . Thereafter, the probability density P(q, t) that it is to be found at position q at time t satisfies the evolution (Fokker-Planck) equation

$$\frac{\partial P}{\partial t} = D \left(\frac{\partial^2 P}{\partial q^2} + \frac{\partial}{\partial q} \left(P \frac{\partial U}{\partial q} \right) \right) ,$$

where U is a potential function and D a diffusion coefficient. Near equilibrium, the potential can be expressed as a quadratic form $U = \frac{1}{2}\alpha q^2$, where α is a constant.

By setting $\partial P/\partial t = 0$, verify that the equilibrium probability distribution is a Gaussian of mean $\langle q \rangle = 0$ and variance $\langle (q - \langle q \rangle^2) = 1/\alpha$. Throughout the approach to equilibrium the probability distribution always

Throughout the approach to equilibrium the probability distribution always has the Gaussian form

$$P(q,t) = \frac{1}{\sqrt{2\pi\Delta(t)}} \exp[-(q - Q(t))^2/2\Delta(t)],$$

where the only time-dependent quantities are the mean Q(t) and the variance $\Delta(t)$.

Substitute this Gaussian form into the evolution equation and verify directly that the term on the LHS can be expressed as

$$\frac{\partial P}{\partial t} = \left[\left(-1 + \frac{(q - Q)^2}{\Delta} \right) \frac{1}{2\Delta} \frac{\mathrm{d}\Delta}{\mathrm{d}t} + \frac{(q - Q)}{\Delta} \frac{\mathrm{d}Q}{\mathrm{d}t} \right] P .$$
 [8]

By developing similar expressions for the terms on the RHS of the evolution equation and comparing powers of q, show that the mean Q(t) and the variance $\Delta(t)$ evolve according to the ordinary differential equations:

$$\frac{\mathrm{d}Q}{\mathrm{d}t} + D\alpha Q = 0$$

$$\frac{\mathrm{d}\Delta}{\mathrm{d}t} + 2D\alpha\Delta = 2D \tag{10}$$

[8]

Using the boundary conditions $Q(0) = Q_0$, $\Delta(0) = 0$, solve these equations for Q(t) and $\Delta(t)$.