
Materials for Devices: Problem Set 3

9. From Fick’s first law, we have that under an applied voltage V , the current density obeys:

jx = −qD∂n
∂x
− σ∂V

∂x
,

where n is the concentration of diffusing ions, q their charge, D is the diffusion coefficient,
and σ is the conductivity.

(i) Sketch a one-dimensional energy landscape for ionic diffusion, labelling the energy
barrier EB.

(ii) Sketch the same one-dimensional energy landscape, but now in the presence of an
external constant electric field such that there is a voltage difference ∆V between
ionic sites.

(iii) Show that, in the presence of an external constant electric field, the net probability
p of a jump from one site to the other is proportional to:

p ∝ e−
EB
kBT

(
1− e−

q∆V
kBT

)
(iv) Consider the limit of a small applied electric field, such that q∆V � kBT . Show

that, in this limit, the net probability p of a jump from one site to the other can be
approximated as:

p ∝ e−
EB
kBT

(
q∆V

kBT

)
.

(v) Therefore, show that:
∂n

∂x
= − nq

kBT

∂V

∂x
.

(vi) Hence, prove the validity of the Nernst-Einstein equation:

σ

D
=

nq2

kBT
.

Solution

(i) The requested schematic is given by:
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(ii) The requested schematic is given by:
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(iii) Let pL→R be the probability of an ionic jump from the left site to the right site. This
probability is proportional to:

pL→R ∝ e−EB/kBT .

Similarly, let pR→L be the probability of an ionic jump from the right site to the left
site. This probability is proportional to:

pR→L ∝ e−(EB+q∆V )/kBT .

Therefore, the net probability of a jump from one site to the other is:

p = pL→R − pR→L ∝ e−EB/kBT − e−(EB+q∆V )/kBT

∝ e−EB/kBT
(

1− e−q∆V/kBT
)
.

(iv) In the limit q∆V � kBT , we can expand the exponential in the bracket to first order
to obtain:

p ∝ e−EB/kBT

(
1−

(
1− q∆V

kBT

))
∝ e−EB/kBT

(
q∆V

kBT

)
.

(v) The number density of ions decreases by the fraction undergoing a net jump:

∆n = −n0e
−EB/kBT

(
q∆V

kBT

)
,

where n0 is the total number density of ions. If this jump is associated with displace-
ment ∆x, we can write:

∆n

∆x
= −n0e

−EB/kBT
q

kBT

∆V

∆x
.

In the limit ∆x→ 0, and using the Boltzmann distribution for the number of diffusing
ions n = n0e

−EB/kBT , we obtain:

∂n

∂x
= − nq

kBT

∂V

∂x
.
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(vi) Frick’s first law in the steady state jx = 0 reads:

σ
∂V

∂x
= −qD∂n

∂x
.

Using the result from part (v) to re-write ∂n
∂x , we obtain:

σ
∂V

∂x
= −qD

(
− nq

kBT

∂V

∂x

)
.

Re-arranging, we end up with the Nernst-Einstein equation:

σ

D
=

nq2

kBT
.

The Nernst-Einstein equation relates the conductivity and the diffusivity in the
steady state.
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10. (i) Sketch a unit cell of CaF2 and describe the coordination of calcium by fluorine and
of fluorine by calcium.

(ii) In δ-Bi2O3, the bismuth sublattice is the same as that of calcium in CaF2, but the
stoichiometry means that there are vacant anion sites, randomly distributed. Sketch
a possible unit cell of δ-Bi2O3.

(iii) Explain why δ-Bi2O3 is a fast ionic conductor whilst stoichiometric CaF2 is not. How
many oxygen vacancies are there, on average, per unit cell?

(iv) Consider yttria-stabilised zirconia Zr1−xYxO[2−(x/2)], which is made of ZrO2 doped
with Y2O3. Calculate the composition of yttria-stabilised zirconia which would give
one quarter of the average oxygen vacancy content of δ-Bi2O3.

Solution

(i) Fluorite CaF2 gives its name to the fluorite structure in which the calcium atoms
occupy a face-centred cubic (fcc) sublattice, and the fluorine atoms occupy all tetra-
hedral interstices. The fluorite structure is depicted in the Figure below:

Ca2+

F−

Each calcium atom is at the centre of a cube whose vertices are eight fluorine atoms.
Each fluorine atom is at the centre of a tetrahedron whose vertices are four calcium
atoms.

(ii) There are multiple models for δ-Bi2O3 in the literature, and two of these are sketched
in the Figure below:

Bi3+

O2−

In both models there is an average of six oxygens and two vacancies per unit cell.
In the left model, oxygens occupy ideal tetrahedral interstice sites of the fcc struc-
ture. For the right model, the oxygen sites are displaced from the ideal tetrahedral
interstice sites of the fcc structure.

(iii) Ionic motion in ionic conductors is typically mediated by vacancies. δ-Bi2O3 is a fast
ionic conductor because there are native vacancies in the tetrahedral interstices in
the fcc bismuth sublattice. Specifically, for the eight tetrahedral interstice sites in the
conventional fcc unit cell, there are only six oxygens and therefore two vacancies. By
contrast, all tetrahedral interstices are occupied in CaF2, preventing ionic motion.

4



(iv) The unit cell of δ-Bi2O3 has two oxygen vacancies, and one quarter of this would
be half an oxygen vacancy per unit cell. In yttria-stabilised zirconia, for every two
Zr4+ ions replaced by two Y3+ ions, and oxygen O2− vacancy is created. This means
that there is half an oxygen vacancy for every Y3+ ion, so we need one Y3+ ion per
unit cell. As each unit cell has four yttrium-zirconium sites, this means we need a
composition with x = 0.25, ending up with Zr0.75Y0.25O1.875.
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11. Yttria stablilised zirconia with a cation ratio of 8:92 (Y:Zr) is produced by mixing ap-
propriate quantities of yttria (Y2O3) with zirconia (ZrO2). What is the molar oxygen
composition, x, in the resulting material, Y0.08Zr0.92Ox?

Solution

In yttria-stabilised zirconia, for every two Zr4+ ions replaced by two Y3+ ions, and oxygen
O2− vacancy is created. This means that for every Y3+ ion, half an oxygen vacancy
is created, and we end up with Zr1−yYyO[2−(y/2)]. For y = 0.08, we obtain an oxygen
concentration of:

x = 2− y

2
= 2− 0.08

2
= 1.96

Overall, we have Y0.08Zr0.92O1.96
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12. The diffusivity of an ionic conductor is given by the Arrhenius equation D = D0e
−EB/kBT ,

where EB is the energy barrier, D0 is the pre-exponential factor, and T is the temperature.

(i) In the limit of a good ionic conductor, the concentration of diffusing ions n can
be approximated as the total equilibrium concentration of ions n ≈ n0. Using this
approximation in the Nernst-Einstein equation, show that:

lnσ ' ln
(σ0

T

)
− EB

kBT
, (1)

where σ0 = D0n0q2

kB
.

(ii) Consider the two terms on the right hand side of Eq. (1). By comparing their change
between two characteristic temperatures for ionic conductor operation, for example
between 700 K and 1000 K, argue that ln

(
σ0
T

)
varies more slowly than − EB

kBT
. There-

fore, explain how a plot of lnσ against 1
T , called an Arrhenius plot, can be used to

understand the behaviour of ionic conductors.

(iii) Consider the Arrhenius plot shown in the Figure below. Estimate the activation
energy for ion transport in yttria-stabilised zirconia.

(iv) In Zr0.8Y0.2O1.9, how many oxygen vacancies are there per unit cell? If the lat-
tice parameter of cubic yttria-stabilised zirconia is 0.54 nm, calculate the number of
vacancies per unit volume.

(v) The Nernst-Einstein equation indicates that the ratio σ
D for a given material varies

only with temperature. Calculate σ
D for Zr0.8Y0.2O1.9 at 800 ◦C.

Zr2Gd2O7

Ce0.8Gd0.2O1.9

(ZrO2 )0.9 (Y2O3 )0.1
BaCe0.9Gd0.1O3−δ (H+)

(La2O3)0.95(SrO)0.05
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Solution

(i) Using the approximation n ≈ n0, we can re-write the Nernst-Einstein equation as:

σ =
Dnq2

kBT
' D0e

−EB/kBTn0q
2

kBT
.

In the last step, we have used the Arrhenius equation for the diffusivity D =
D0e

−EB/kBT . Re-arranging this last expression, we obtain:

σ =
D0n0q

2

kBT
e−EB/kBT .
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Taking the logarithm of both sides, we end up with the required expression:

lnσ ' ln
(σ0

T

)
− EB

kBT
,

where σ0 = D0n0q2

kB
.

(ii) Let T1 = 700 K and T2 = 1000 K. Consider the change in the first term:

ln

(
σ0

T2

)
− ln

(
σ0

T1

)
= ln

(
T1

T2

)
= ln

(
700

1000

)
' −0.4.

The corresponding change in the second term is:

− EB

kBT2
−
(
− EB

kBT1

)
=

EB

kB

(
1

T1
− 1

T2

)
=

EB

kB

(
1

700 K
− 1

1000 K

)
'

(
4× 10−4 K−1

)
× EB

kB
.

A typical energy barrier in an ionic conductor is of the order of 1 eV, so that
EB
kB
' 1 eV

8.62×10−5 eV K−1 ' 1.2 × 104 K. This gives a change in the second term as
approximately:

− EB

kBT2
−
(
− EB

kBT1

)
'

(
4× 10−4 K−1

)
× 1.2× 104 K

' 4.8.

Therefore, the variation in the second term is about one order of magnitude larger

than the variation in the first term. This suggests that the first term ln
(
D0n0q2

kBT

)
can be taken to be constant with respect to the second term EB

kBT
. This implies that

a plot of the logarithm of the conductivity lnσ against 1
T will be an approximate

straight line with slope −EB
kB

and intercept ln
(
σ0
T

)
.

(iii) Yttria-stabilised zirconia corresponds to the orange line. We estimate its slope as:

− EB

kB
' −4− 0

1.48× 10−3 − 1.08× 10−3
= −104 K.

Re-arranging,

EB = 104kB = 104 × 1.380649× 10−23 = 1.38× 10−19 J = 0.86 eV.

This should be compared with the thermal energy associated with room temperature,
kBT ' 0.03 eV.

(iv) In yttria-stabilised zirconia, for every two Zr4+ ions replaced by two Y3+ ions, and
oxygen O2− vacancy is created. This means that for every Y3+ ion, half an oxygen va-
cancy is created. The unit cell has four yttrium-zirconium sites, and for Zr0.8Y0.2O1.9

we have 0.2 × 4 = 0.8 yttrium per unit cell. This leads to 0.4 oxygen vacancies per
unit cell. Finally, this leads to a number of oxygen vacancies per unit volume in SI
units give by:

0.4

(0.54× 10−9)3
= 2.54× 1027 m−3.
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(v) Oxygen vacancies have an effective change of q = +2e, where e = 1.602× 10−19 C is
the elementary charge. Using the results in the previous parts, we use the Nernst-
Einstein equation to obtain the ration σ

D in SI units as:

σ

D
=

nq2

kBT
=

2.54× 1027 ×
(
2× 1.602× 10−19

)2

1.381× 10−23 × 1073.15
= 1.76× 1010 Fm−3.
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13. The α phase of silver iodide (AgI) has a iodine atoms arranged in a body centred cubic
sublattice with a = 5.0855 Å for the conventional cubic cell. It is an ionic conductor with
Ag+ cations being the mobile species, and the diffusivity at 150 ◦C is 4.5 × 10−11 m2s−1.
A potential difference is applied across a sample of AgI, using Ag for both electrodes, and
current is allowed to flow. The half cell reactions are:

cathode (reduction): Ag+ + e− −−→ Ag

anode (oxidation): Ag −−→ Ag+ + e−

Consider:

(i) What is the number of charge carriers per unit volume in AgI?

(ii) What is the conductivity of AgI at 150 ◦C?

(iii) What is the mass of silver deposited at the cathode if a current of 5 mA flows through
the circuit for 5 minutes?

Solution

(i) The conventional bcc cubic cell has two atoms, so AgI has two charge carriers (silver
atoms) in the conventional cubic cell. The number of charge carriers per unit volume
in SI units becomes:

2

(5.0855× 10−10)3
= 1.52× 1028 m−3.

(ii) From the Nernst-Einstein equation, we obtain a conductivity in SI units of:

σ =
Dnq2

kBT
=

4.5× 10−11 × 1.52× 1028 ×
(
1.602× 10−19

)2

1.381× 10−23 × 423.15
= 3.00 Ω−1m−1.

(iii) The total charge Q deposited at the cathode for current I over time t is given by, in
SI units:

Q = It = 5× 10−3 × 300 = 1.5 C.

Each silver ion carries a charge q = e, so the total number NAg+ of silver ions
deposited is equal to:

NAg+ =
Q

q
=

1.5

1.602× 10−19
= 9.36× 1018 atoms

The relative atomic mass of Ag is 107.8682 from webelements, so we obtain a total
mass deposited equal to:

9.36× 1018 × 107.8682× 1.661× 10−27 = 1.68× 10−6 kg.

This is equivalent to 1.68 mg of silver.
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