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Books Landau and Lifshitv. Brief but many usoful examples . Will use as basic 

text for these lectures. Several brief books in Rayleigh Library 

Leech Classical Mechanics 

Ter Ha~ Hamil toni an HechC'.nics 

Treatises are by E.'I' . ~Jhittaker (C.U.P.) -.(which is good value as paperback) 

and by L. Pars which has many good exiilllples but is rather long . 

Several good intermediate sized books e.g. Golds tein. 

Lectures to cover 

, 1) Review 

2) Inva>:iants from Lagrange ' .s Equations, v:i.rii.ll th(wrem 

3) Small oscillations; damping, resonance . 

4) Friction, Rayleighan function 

5) Angular motion 

6) ~jroscopes , tops etc. , Coriolis' forces 

7) Constraints , holonorr.ic and non holonomic syst..ems 

8) Least constrai:~t:Gibbs-Appell equations 

9) Hamiltonians , Liouville's equation 

10) · Hamilton-Jacobi theory; cano nical trunsfo.rmations 

11) Continuous systems 

Analytic~l Dynamics Concerns itself ~vith the expression of the laws of 

physics. Although histcr ica.lly the dynamics of particles and rigid b odies 

came first, the sul>j e ct embraces the e.1t:.ation~ of wave I!!Otion and of q-:.1antum 

mechanical .1.Jhenomena. One can regard physics as t.'lte irwestigu.tion of nature 

which leads to powerful and succinct lm"s in Hhich huge amounts of informatior. 

are reduced to brief princi~les and equations . 

Classical mechanics has reache d this point in formulation (the last 

great work of fo.r.mulati!:>n cam~ in 1900) but there a re s till !'tlir.pri sos appea ring 

in the solution of ti~e e t!uatians of mo tion . 

To illus tr. iite the !:a c t tha t the r e ar.·e d i f fe r <:nce approaches \;<:: wr. i t e 

do-wn a brief prr:!vlew o f the f ormulations : 
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Lagrange's Equations : are the hei r to Newton's equations and are differential 

equations for the coordinates or other descriptive variables. 
. \ 

Usually Lagranges equations are second order differential equations for 

say k dynamical variables: q = f ( ••• q ••• ) r r 
' Another method is to use Hamiltons equations where the equations appear 

in pairs for coordinate q and momentum p 

aq 
r 

at = 
ap 

r , at aq 
r 

where H (qp) is the energy written in t erms of p, q \.,rhen it is called the Hamiltonian . 

The Hamiltonian form emphasizes an essential aspect of physical laws: 

t:hey are Causal i.e. the future is deto2:mined by the past. (Note that Causality 

is not the same concept as de terminism. Causal equations say that if we know 

a set of variables say p, q of Hamiltonian at time t, we can calculate them at a 

later time. Or given a wave function 1PCr) at time t we can calculate it later. 

Determinism says that experimental measurement at time t permits the prediction 

of the results of experirnental measurements a t a later time. Class ica l physics 

is causal and deterministic, quantum physics is causal but not deterministic) .• 

Both Lagra."\ge 's and Hamil ton • s equations give time dependent functions 

as their solutions tt1hich directly describe the system e.g. a particle has a 
..J 

coordinate X(t). An alternative in to ask for the probabiHty of finding the 

particle at x, P(x,t) say. If a particle moves on a definite trajectory P is 

just ~(x- X(t)), and if~= F (x ) P satisfies the equation 
) 

. (~t +;X P(x)) P(x,t) ::: 0 

or more generally for say the Hamiltonian variables 

(() au a 
let+ l: ap -~- ~ · ~p-) P( ••• q ••• !?···•t) = 0 

r r r r 

This is Liouville's equation and is the foundation of the statistical mechanics 

of any physical system. ) -We s tart by studying !.<\granges formulation of mechanics 

(1788). The usua l c artesian variables labelling a particle, or the J_)art of a 

Lecture notes from Sam Edwards' 1985 course on Analytical Dynamics delivered 
to second year ungraduates in Cambridge. Uploaded by Ben Simons, who took the course!



3 . . .. 

rigid body is called x, (x, y, z), (x, y, z) but these are often not 
~ · r rl ~ th 1 Dlm severa ot em 

the best variables, for one likes to have a variable q such that all values of 

q correspond to all states of the system and unless it is totally unconstrained, 

the simple c::artesians \-,•on' t do this. 

Lagrange sho\.,red that Newton's (and subsequently all other conservative) 

equations o£ motion could be derived from a Lagrangian 
. 

L(x, x, x •••• ) (usually only up to x) .. 
or in terms of our dynamical variables q 

. 
L( ••• q ••• q ••• ) a a 

by the calculus of variations i.e. if we consider 

5S .:.: 0 for the actual ·~otion 

\ 
S is called Hamiltonians principal function, and its numerical value is called 

the Action. {Sometimes S is called tl1e action, but I prefer to think of action 

as the numerical value of S in erg-seconds or Jxla ·-hours or whatever, just as 

the Hamiltonian is a function, but its value is the energy measured in units 

of energy.) Ratlier confusingly the basic equiltion is refered to as Hamilton's 

principle: 

u 6 J L dt = 0 or cs = 0 

. 
If L ~ L(q,q) let us vary q to q(t) + 6q(t) 

. 
oL + L = L(g + og, q ·~ cSq) 

0 ClL I 

L + • ClL 2 
"' q aq + aq aq + o < aq) 

• but oq(t) 
d Oq ( t) 1 so if 65 :;: 0 = dt 
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lt 
0 = J dt(oq{t) 

nr. 
3q + • aL ) oq a~ 

= I [ ()L d dt oq(t) ·aq + dt (oq) 3L) () q 
Integrate by 
parts 

. ' 

= I d ~ < , [ arJ d aL) toq t, aq - dt aq + 
(

end effects which 

= 0 for paths starting 
and ending at same points 

Hence 

d ClL 3L 
dt a<£ - aq 

or for several q's d () L 
-~-dt aq 

r 

= 0 

One integration is possible, for multiply by q and sum 
r 

r[§_~- ~] qr -- 0 but we can \~rite r dt a<): aq ,. r r d 3L 
l:dt ~ r 

d [r • ~J [aL • dL "] i.e. dt qr a· - E aqr qr + atlr qr q r 

So that 

3L E ~ ~ - L = h a constant, 'ir aq called Jacobi' s i ntegration,the energy. 
r 

If the energy can be split into a kineti c energy T and a potential energy V 

T + V - h ( or often written as E) 

then T V = L 

f . L m~2 - v(~) . e.g. or part~cle in a potential q is jus t x,L = • ~ A 

l 

) 

In elementary mechanics a great advantage of Lagranges approach compared 

to working directly from Newton ' s Laws is that the various reaction forces 

which come into N' s equations and have then to be e limi nated , just don't appear 

in Lagrange ' s equations so that one goes straight from T - V to the equation of 

motion. 
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Examples A light rod has two heavy rings at its ends which enclose a rigid wire. 

What are the equations of motion when 1) the wire is a circle in a vertical 

. plane.ml a ' 
.._ . 

2) a vertical right helix 

3) A double pendulum is 

Show that 

. . , 
4) Sliding pendulum 

z = bO 

x = asinO 
y = acosO 

·- L 

" · '" 

+ m2 gl!.cos<fl. 

Derive the equations of motion in these problems J. - 4 (and try to do 

it using Newton' s laws for compariGon). 
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5) If one changes variables x = f (q1 •.• q) a a s 

a= l •.• s 

If one studies such an L with a general aih show that 

l: a ij 
.. r rj~J a/rk = au 
qj + aq 

... 

[jkl 
[a'\. aa .. _ 3ajkj 

where = ~ __ 1 + __2:2 

iJ I aq. aqk (lqi 
~ J 

(This is called a Christoffel symbol.) 
• I • 

A note on functional differentiation. 
l 

We got Lagranges Equation by putting q(t) ... q(t) .f. cSc.r but this is a 

bit pedestrian, for if we had o{x), then by putting f(x + dx) = f(x) + g(x)dx 

explicitly we can find f' (x) = g(x), but normally one uses the rules of the 

calculus, and does not prove ~~or.e~s like ~ x2 
= 2x from scratch everytimc. 

So t.'lere should be an extension of the calculus to cover 

u ~q(t) F ([q]) directly. It is this: 

axl ax2 axi 
I think of a set of variables x 1 , x 2 •.•• then -- = 1 - · = 0 or briefly -- = o .. . 

axl ) axl cxj 1) 

In particular if A= r ajx. ~A = ~~ /.d.xj = E a.o . . = a1 . J ux. ux. . . ) J 1) 
1 l. 

If we consider A ~ I a(j)x(j)aj 1 x-+ x + ox gives 

Ja(j)x(j) + Ja(j)ox(j)dj and 

3A ought a A a (i) • .. .__ = ai to go over to :::: 

a xi ax (i) 

The appropriate form is OX ( j) 
ox (i) = 6(i - j) 
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The analogue is then 

ox ( i) 
ox(j} = oCi-j) o(i-j> = 0 i + j 

c co i = j 

but in such a way 

Jo(i-j)dj = 

i "" j 

i + j 

tha t 

1. 

Our previous definition of L's equation now becomes 

But 

; fo(t-T) <lL + Jcq(T) aq oq<t> 

f 
oq(T) oJ. 

+ oq<t> oq + 

§3.<•> d 6~ d 
oq(t) = dt ~q<t> = dt o(t- •> 

d2 2 
oo(T) ~l..=~o<t-T). oq<t> = dT2 oq<t> dr2 

The rule with o functions is always to convert any integral into 

-co 

. ·. 

and one does this (as before) by integration by parts J~(t-t) ~~ = I 
d <lL - 0 (t··T)- - . ctt aq 

So that L' s equations are 

(lL 

<lq • • • ::::2 0. 

d cL 
= - Cit al{ 
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Example: a dynamical system has 

··2 n L = (q ) .p (q) 

what are its equations of motion. 

Conservation Laws For most examples L is not a function of time, and if we are 

discussing some basic physical system this says that the law of physics involved 

is the same \lhenever we study it. 

dL 
"' t -~L q. + l: 

aL .. 
~ 'I.i. . dt cqi l. aq .. ,, 

~ ...... 
"-

t qi d r3L ) t E <3L = 
l ocr1J a-:- q. dt q. l. 

l. 

~E ( • 3L J = qi aqi dt . 

" • ClL 
L q aq - L = constant)~~e Jacobi integral, as above. 

The invariance under time displacement of the equations of motion implies 

conservation of energy. 

The result is general: any invariance leads to a conservation. The . simple 

cases are t~me, above, displacement in space T ~ r + e 

oL = E CJL or = ar 
£ E cL ar 

But if laws are invariant for any c, we must have 

r. ~L- = 0 a ar 
• d aL 

. .• dt r. ·;;;:; = o , writing V for r 

.. 
' . 

For particles P = E 
a 

a a " a 

(}L 
P = E -- is conserved a av a 

mv a conservation of momentum . 

If the whole system is moved with a velocity v-, V 
-+ a 

moving frame of reference. Then 

= V' + V amounts to a a 

Lecture notes from Sam Edwards' 1985 course on Analytical Dynamics delivered 
to second year ungraduates in Cambridge. Uploaded by Ben Simons, who took the course!



. ' 
P = E mv 

= 1: mv' + VErn 

.~ 
>P = P' i · VM M = Em 

p 
, · · V = - in a frame where P' == 0 

M 

1. e. system has its centre of mass at rest where centre of mass R = Em r /Em a a a 

.. Energy .1.:;1: 
2 u = mv + a a 

-- l:iE m (v' a a + V)2 + u . . 
:::; ~E m ,2 + V· E m v + u v a a a a . . 

··~ .. '· . 
E = E' + V•P' + u. 

A related the orem is Y.onig 'l'heorem: the kinetic energy of a body can be 
·'· 

separated into the kinetic energy which would oiJt a in if al l the mass \.,.ere 

concentrated c.t the centre of mass, and the kinetic energy which t,.!Ould obtaiP. 

if the c entre of mass were fixed and the body rotated about it. 

Angulo r momentum Conservation la·w f ol l c ·.vs from the isOtropy of space i.e . laws 

of nature are inva riant on rotation. 

1
6

~ 67J~' t: r ..6 / r-
1 

~r 
0 

or 

M is Angular momentum . 

cons ider a rotation o$ , also considered 

as a vector 6~ . 0 arbitrary origi n 

or = Of X r 

so that ov = &f x v 

or - ·a 
dL + --. av -a 

0 if l a\':s invariant 

t(E • O$ X r + P • 0~ X V ) = 0 a a .-...a_ -a o....a - a 

cS~· ~ r r x p o 
'f dt a a "' 

M = I: E..a x J2.a is conserved 
a 
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Change of origin M = M' + a x p. 

In frame of reference ruoving with V, M = E m r x v = r m r x v' a a a .-a a -a 

M = M' + ll~ x Y._ or M = H 1 + R x P 

+ E m r x V -a-a -a 

in the case where one system 

has its C.M. at rest i.e. -

M = Intrinsic ang.mom + ang.mom due to motion as whole. 

In a central field one can take the centre of the field as origin when 
•2 2 2 .2 2.2 

L = ~ E m (r + r sin e $ + r 0 } - t U(r ) a a a a a a a a 

and M is conserved along any axis thro that centre. 

Examples 1) a homogeneous field exists in the z direction
1
·prove that Mz is conserved 

'irrespe~tive of origin) 

2} 

3} 

What 

M 
X 

M y 

M z 

are 

= 

= 

components of M in cylindrical 
. . 

in(rz - zr) sin~ mrz~cos~ 

-m(rz-zr) 
• 

cos$ - mz$sincp 

In polar coordinates 
2 • • 

M = -mr (Osin~ + ~sinecos6coscfl) 
X 

2 • 
,Psin6cos8sin$) M = mr (Ekos$ -y 

2. 2 
M c ror cj>sin e 
~ 

M2 ro2r4(S2 • 2 2 = + cp sin 6) 

coordinates 

Virial Theorem: Scaling 

A scaling argument is based on the idea that in certain ~hysical situations 

a change r -+ ar for all coordinates can be absorbed by a redefinition of the 

constants in an equation in a non trivial way. 

There are many scaling hypotheses in physics , but in mechanics the process 

is applied as a riqorous result for some specially simple cases. 
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r 1 

Suppose U(ar1 , ar2 • arn) 

and change t ~ at. Then 

a 2 k L+-T-aV a2 

\\ 

; constant x L provided that 

D 1-k/2 or .., - a 
.. ' · 

Now consider a closed system of particles (in box say· in thermal 

equilibrium (but not necessarily so)) with such a potential and consider the 

time average of any quantity f(t) 

f =lim! JT f(t)dt 
'(-t<t> T 0 . 

dF If f contains a term dt' this does not contribut e provided F is bounded 

because J cF dt = dt F(T)-F(O) and Lim~ J ~~ 
't-t<tl 

+ o. Apply this to T. 

p is replaced by - au;ar and lst term CJl.V e no contri bution by aurresul t above.!... hence a . 

2T ::: E r a ~~ or [ 2T ::: kU ] vi :.al theorem 
a a 

) . 

Since T+U=E=E U = 2E/ tk+2) 

T = kE/(k+2) 

This seems at first sight a great theor em, but in practice there is always 

a reason for it being useless . 

Textbooks of mechanics normally contain chaptet~on special cases e.g. 

planetary theory, and on scattering theory, and on small oscillations. l~alytical 

dynamics contributes very little to these which can all be solved by elementary 

methods. 
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We just note that for small oscillations, L can be expanded as a 

ClL quadratic about a point where Clq = 0 

•• = b q =-so that a g 

1 . • 
and leaves - E(a qna + b q a ) 2 nm -m nm n '"m 

if one \trites the eigenvalues of the matrix -1 2 and the eigenvectors - a .t> as w· a' uses = = ... 
-_w 2q are w 2 2 as coordinate system q -· i.e. frequencies = w: . a a a a 

Interest centres on the ~generacies of thew , and this is best resolved in highly a 

symmetric systems (with high degeneracy) by g~~up theory. A few simple examples 

are set: 

Examples Small oscillations 

1) Study the small oscillations of t he hinged pendulum and the double pendulum 

·~xs 3, 4) (L and L) ..... _. 

2) ~ light string of length 4 a is stretched under tension between fixed end points. 

4m Particles of masses m, 3 m are attached to points dis t ant a, 2a, 3a, 4a from 

one end. 

Find the norma l modes 

( L <~ (Pars ChlX} 

and solve the motion. 

':~) A heavy rod AB of mass M hangs i n a horizontal position fro~ t wo supports to 

w hich it is attached by vertical l ight strings each of l ength a attached to A 

and B. A par·t i cle c, mass m, hangs from A by a light string of length a and a 

siiLtlar particle D from B. Equilibrium is disturbed in the vertical plane. 

Solve the motion and us e it to illustrate the fact tha t two pendulum 

clocks hanging in the same. way transfer their amplitudes so that one amt>litude is 

large when the other is small, which situation reverses and i s periodic. lPars Chl.X~ . 

4) Solve· the small oscillations of a triangular molecule H2o where the potential is 

a fWlction of the HO dis t ances and HOB alone . 

(Land L) 
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Friction produces irreversible terms in the equatiomof motion e.g. a damped 

oscillator 
• •• 2 

\1 X + X + (J,l 
0

x ::: 0 

has the term v·x which -+ - · v :ic under the operation t -+ -t, as is physically to be 

expected. To incorporate friction into tl1e Lagrangian form~lism one can 

generalise to Rayleigh's dissipation function, or the Rayleighan. In the example 

above one writes x in \)..<as . v and notes that 

d 
dv 

') 
~\IV ='iN 

Thus formally, if one writes 

R = L + F 

L == L(x,x) 

F=F(IJ) 

the equation is recovered from R = ~ mX2 L 2 2 
<WJ.l X 

d 
dt 

ilL cF +- = 0 ax ~v: 

2 + ~lll\IV' 

At this point one putsy 

but not before. 

. 
== x, 

This procedure seems quite arbitrary at this stage, but Rayleigh showed it to 

be quite systematic, allowing V to be a function of X {but not Of X). 

For if we look at the rate of loss of energy 

= - r - r xi v1 . ex> x. . J J 

:c:. -2F 

where He have generalised our example to several degrees of freedom and to a 

general frictional force on ·x1 ·of ~ v1 j(x)xj. 
J 
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Brownian dynamics 

An important case at a molecular level arises when frictional losses 

are balanced by a random force. The classic case is of a small spryere 

radius a in a viscous liquid buffeted by molecular collisions: 
. . . 

. . mr .. + 6nanr = f (t} 

Let us be a bit more general and adda .hal!lllonic force, and look at it in one 

dimension to .ease the algebra 

2 
~ + \1 X + w X = f (t} 

· 0 

The for.ce f(t) fluctuates in such a way that <f(t)> = 0 where< >means average 

i.e. 

Lim! JT f(t)dt = 0 
'('-+«> 0 

but <f(t)f(O)> {=<f(t + T}f(T}>) 

= ~ h ( t} 

One expects h(t} to be a decreasing function of t, and in the l imit of a very 

fast decrease 

h<t> = ho<t> 

the force f(t) is called white noise. 

If one fourier transforms 

<f(t + T}f(T)> = ~h(t) 
U one finds <f f .> = ~ h o(w + W1

) w w w . 
where h(t) - !_ J - 2lT 

and for white noise h = h a constant, all frequencies equally present • 
• 1.1.! 

Then fourier transforming the whole equation 

2 2 ( -w + w0 + i'Y w) x = f 
·w w 

<x x • > = 
·w w 

h o (w + w•) w 
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This enables us to work out the average behaviour of the buffeted oscillator 

<(x(t) - x(0)) 2> 

= --~1~ < J·c iwt iwo) ( iw't iw'Q 
( 2n) 2 e· - e xw e - e . ·)xw'~w 

1 I ~hw~(w+w'~ i~t iw't) 
"" -.(

2
-n-)..,...2 2 2 2 2 , .(e -1) (e -1).dwdw' 

< w -(JJo) +\> (;J 

= _.;;;.1~ J hw (1 .- co~t) (ju, · · · 

( 2 ) 2 ( 2 .2} 2 2 2 
1T ~- - .ooo + \) w 

?. Special cases: (a) w
0 

= 0 h = h 
Ill 

(b) 

(x(t) - x(0)) 2 h 
= (21T)2 

= nh(v 
2 

(2n) 2 

= {4.>] 
if inertia is small then 

{X (t) 2 h - x(O)) = 
(2n) 2 

h 
0::: 

[ J 
sin2 (wt/~ 

'2 
w 

- J 

(t (1- e-vt)) 1 
\) 

t 

2 !in 2 2 
w w . . .:.. wo can be 

J 
(1 - coswt)dw 

4 2 2 
wo + \) w 

-~ :l • [1 e ~J 2 2 
_w 0 v(2n) 

t + co 
h ... 

4n . 2 
\) 

· 0 

sin~wt/2) ] 
2 2 

w + \) 

ignored and 
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In case (a ) one has the Bro\mian random walk, (x (t) - x (0)) 
2 

- t 

in case (b; a buffe ted oscillator where there is a constant average displacement 

of the oscillator. 

' Although the foundation of physics is the Lagrangian and Hamiltonian 

formalism of analytic dynamics , the random dynamics brie fly alluded to above has 

fa~ greater application in classical physics • .-· 

Rotations Analytical dynamics can offer something new in the study of 

spinning and rolling, but first we give a revision of tha t subject using the 

Lagrangian forna lism. Consider the rotation of a rigi d body, c.m. is 0 

~' 

' -·· 
y 

If we change origin by£= r' + a 

V' = V + f2 X a 

... 

d~ = dR .+ d¢xr - - ~ --

dt 
dR v- c v -'dt 

·.· d~ = n 
.dt 

v = v + nxr 

n• = n, so there is an 'angular ve locity• independent of 

the coordinate system. 

T 
2 L J, m (V + n X v) 

~ = I: m, cross term vanishes. Define the inertia tensor 

2 T = ~~v + ~r1 n.n -/ u 
k l. k 

2 Principa l axes of I -~ ~LI. n . = Trot. 
l. l. 
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Angu~a~ momentum (L and L Ch VI) 

M ::;:: l: mr X (nx r) 

::;:: r m[r2 n - E.<E..m] 

. ·- : ·'· : . M = I n, in.·prim axes M. :::: rini. = ~ 

Special cases: sphere M =constant, n = constantRotator (\ = r
2

, r
3 

= 0) 

• , I 0 • : * 

M ::;:: rn 
+ + n ~ to axis of rotator 

Hence free rotation of rotator is uniform motion in plane about an axis l to the 

plane. 

Symmetrical body r 1 = r 2 ~ r 3 • One can chose xix2 axes arbitrarily 

take x2 ~ to plane containing constant M and instan4aneous x3 axis. M2 = o and 

n2 = 0 thus M,O and axis of symmetry are always in one plane i.e. V ::::: 0 X r 

velocity of every point on the axis of the body is i to that plane i.e. axis 

rotates uniformly about M in circular oone: r egular precession. 

M cos e,n. prec sine = n, 
I) 

0 precession= M/I1 • 

Equations of motion of rigid body 

By summing e.g. motion of parts of body, the total momentum P == ~V 

~ total mass, V vel. of c. mass 

dP F =- total force Ef -= dt 

au 
:: - oR U potential energy, R c.m. 

) 

This result comes also directly from Lagranges eqs . 

Similarly dM 
- == K dt 

where M = EE_ x £. and K = Er x f 

r x f is moment of force and K the torque . 
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Euler:ian angles Look at a rotation taking spherical triangle XYZ into ABC. The 

z 

~-.:_-~-...:..:..:?A 

Another diagram (one used by L and L) is 
-r. 

+ 
Jl,.. ,-..,...._ 
: \ 

.: \ 

Collecting components of angular velocity 

nl = ~ sin e 
• 

n2 = <jl sin e 

n3 = ~ cos e 

If a, ~ are zeros ~ is spin of body. 

2 Kinetic energy T t = E l:t I. n . 
.,:o ~ ~ 

~nd for symmetrical body 11 = r 2 

sin 

cos 

+ 1/J 

rotation is specified by three angles 

e, ~, llJ. 

e, ~ usual polar coordinate angles, 

and !p the rotation about the polar axis. 

The moving plane \ x2 intersects 

the fixEd plane XY in ON the line 

of nodes. 

,. 

n along the moving axes -· 

lP + e cos . ..P 

lP + e sin $ 

' · 

Since. x1 , x2 axes are arbitrary for symmetric body take x1 to be ON line 

of nodes i.e. ~ = o, then 
• 
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0 

Euler's Equations < 

Simplest form of equations comes when one uses a moving coordinate 
. . 

syste~ whose axes are principal axes of inertia. If A is a ·vector which 

does not change in the moving system 1 only the rotation changes it 

dA ·- = 0 x A dt -

in general one will have to add the change dueto the moving system 

. •, 

dA d'A -=--+OxA dt dt -

dP n X p F d'M 
dt + = dt + (2 X M = K 

.J 

[dV ~) il . l. <n x F. }J- + = dt l. 
or 

and in free rotation 

Examples: 11 = I 2 n3 = 0 n3 :::: constant 
• 

n1 = A cos wt n2 = A sin wt; leading to 

A~ symmetrical top 

Suppose r 3 > 12 > Il 

Then I: 2 2E r . n . = G , ....,. '-ll t l. l. ' 

t r~n~ = M2 
'I ,_),..\. ' \ ·i \ Y) 

2 

l: 
Mi 

c 2E Ellipsoid or 
Ii 

I: M2 = M2 Sphere i 

.: ' 

I 1:: '. 
"' "I' . .., e tc . A.>< 

IVv 

~P = n3 <1 - ::0:3/Il) • 

· . 
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Then vector M lies on line of intersection of these t.,.10 surfaces 

,J t,.. t 

When M ~ M1 or t1 ~ M3 the intersection is a small closed curve giving the 

precessing locus and is stable. When near M2 not stable and the axis wanders 

around. 
l One can eliminate say n1 and n3 from Eulers equation to give 

• 
n2 = I {E2EI3 - M2 ~ - I2(I3 r2>nV [<M2 2EI1)-(I2 (r 3 -Il~;J} 

i.e. n2 

or if -r ::: 

and s = n2 

= /(~2 

t I <x3 

/,r2 (13 

't = 

x/I 2 / {I l I J) 

e2n2> ca2 _ 
2 

a2n2) 
2 

12) {M2 - 2EI 1)/~1r 2r 3 ) 
I . 

- ·r 2)/(2ET3 
2 

- M ) 

I
s ds 

.. i 

r 2 ) (M2 - 2EI
1

) 

(<1) 

s = snT, Jacobian Elliptic functions. 

.' 
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l . 

Examples Rotation: Tops 

l) A heavy symmetric top spins about a fixed point. Solve the motion in terms 

of the integral 

t == f . /2 (E 1 

where I' = r 1 + ~ 12 

2 

E' = E 
M3 

-213 - ~gl 

de 

u = e 

2 
(M2 - M

3 
cos6) 

21 , . 2e 
1 s~n 

- ~gl(l - cose) . 

2} Find the kinetic energy of a cylinder rolling on a plane. 

3} A cylinder rolling inside another cylinder 

4) A cone rolling on a plane 

5) A rod moves on a smooth plane which rotates about a horizontal line with 

constant ang. vel. w. 

Show that the problem is separable when expressed in terms of (C,n) 

the c ·. g. G of the rod and a the angle between the rod and 0~. On is inclined 

at w t below the horizontal • 
• 2 •2 2 2 2 • 2 2 2 

:(L = ""<~ + n +w n ) + ~ k (6 +w· sin 8} 

+ gn simrt 

where Mk2 is the mo~ent of inertia about an axis through G L to the rod. 

Solve the motion. 

6) A penny rolls on a table making a with plane witl1 its centre travelling in 

a circle radius b with speed bw. 2 Show that { (2k + 1) b + kacoscx}-w ::.-. g cot ex 

where kt<ta2 is value of 2 pr:i.r:l . .mon .• inertia, 2kMa~ an. 
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Dynamics with Constraints 

; .. ~ ·~ . Suppose there is a restriction e.g. rolling condition. It does no work 
t 

1.. 
and acts on q, q only (not explicitly on q} . Say it is 

• I: A q
5 

= 0 s .rs 
A ;: A(q) .l '(.. - ( ~ . ' . 

_/ . .. 
• Then Lagranges/Euler•s method is to introduce multipli~s A 

cs -=0+ 

d 
.. ··-. .. -- . : ... \ . ~ ;· ::: : .... : t ~ • 

- - E >. A .:(q ) 
dt .. a --~ r 

d l:AA But dt 

. ' ~ :- . j • 

So if 

EAA n a A . = + q dq . l ~ . 
···:{ : -· "'1 · · • •. • ~ > • . 

we write A = t; one has 

<lL 
aq 

r 
+ Et; A ::: 0 I a ar _ 

~ 

..: ...... 

't. 

·. ·.:. 

·' 

.... ,·.· . . . · 

.... .. 

;! ··, 

cancel 

' 'T • .. , ', '::: "" 

A.,.. - I 

I~ v C.'-

<: : ~ 

:· ~ 

.. 

The t; are now determined as in the calculus of variat~ons by the constraints 

I:Aq = 0. You will find many examples of the use of these equations in the text 

{,,books • . But you will see that t; _comes in and then . goes out again and is like the 
· I 

reactions of Newtonian mechanics (indeed t;'s ~reactions, keeping the system 

following the constraints.) It is natural to ask if there is a method of going 

directly to the equations of motion, doing to the Lagra_nge - Euler eC!Uation what 

Lagrange did to Newton. This can be done in the Gauss-Hertz principle of Least 

Curvature, and (grandest of all analytic dynamical equations} ~~e Gibbs-Appell 

equations. This is not done hy Lan..lau ·and Lips. but is_in Hhittaker , and Pars . I 

follm ... Pars. 
Cons ider a simple (indeed trivial s ince it is s oluble i.e • .'int~·Jrable 

i.e. "holonomic") cons traint a~ + by = 0 for a p a rtic l e on a line in a plane. 
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The simple kinematics of a particle in a plane allows any values for xi' y1 and 

for ~i' yi in unconstrained motion. We can consider a displacement ox1 called a 

v~tual displacement which satisfies the constraint (and therefore does no work) 

but is a deviation from the true motion. 

Now look at the equations of motion derived earlier 

m x =X ' +. X' r r r 

where X are forces present and X' comes from the constraint r r 

X' = U; A r a ar ., 

... :, . 

c~ .. For a virtual displacement ox , by its definition it satisfies l:A o r rs.xs 
{X are the q's of the initial development) s 

and r (m x r r r 
x )ox :; o 

r r 

-. 

= 0 

Another version of the equation EA6x = 0 comes when we consider . the 

system with a Ax difference in velocity from the true velocity 
r . . 

(ox= (6x)t t s~me time) 

E A Me rs s 

and t(m ~ - x·) Ax ~ o. r r r r 

. '. 

= 0 

One can extend this argument to accelerations for if l:A x ~ O, by differentiating rs s 

dA 
t(A x + ~ x) = 0 rs s dt s 

d a • ·a 
dt = at + t xi ax . 

~ 

Now consider two motions with different accelerations but the same velocity. For 

this to be possible 

E(A (x +Ax)+ rs s . s 

dA rs 
dt 

and t(m ~ - x )Ax = o. r r r r · 

EA Ax = 0 rs s 

; .. 

x > "" o s . 
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• 

: Now consider the 'Curvature' to use Hertz' term (though the principle was 

introduced by Gauss) 
) . ) . ! 

: . ~ ~ . :\ r ·t .:. n ·. · .· X , .. , •• r 2 "· 
C = ~ E m (x - - ) · r r m 

r : 

and consider a variation in the acceleration alone 

0 0 
; ., 

• 6C > 0 
·. 

and oc ·c 0 for the true solution of the motion. 

Example Atwood's machine i . 

c = ~ { M(f-g) 2 

+ m(-f-g) 2} 

(M = m) C = ~ {<M+m)f 

+ 2Mmg 

oc = o 
M- m f = 
M + m 

ac . ' . equally from af" c: 0. 

J 
Example Atwood's monk~ 

g 

monkey mass M 

climbs up string 
• 

• J 

.. , .. .: 

at rate ~ along string 

.. ·. ··. · '. 

..... ·,: 

.. . . ... 

-ace -+ 
•t .down 

. ! t; :.. • ~ . ' . ~ •. 

. ; 

' .. 

j{ ace f up 

gravity 
= g 
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.zs. 

'4l (0) = ~ (0) :::: 0 Z = ht of monkey 

.. J · 

• •• 

l; = ht of M 

c = ~ {ru(z + g> 2 + M(~ + q> 2} 

z + c= cJ~ 

c ;::: ~{M(z + g) 2 + t-1 ( 4> - z + g)2} 

ac 
0 - :c 

a~ 

{M + m)z = M~ 

M z =- ¢1 M+m 

.. .. "' 
+ (M - m)g 

.... • ' 

·- : \ 

~ ·- .:· '-' , 

..... I - '• .. .. 

Example: Particle on wedge all sliding smoothly 

wedge ace. 

wit.'1 f 

ace. wj_th f1 relative to wedge 

~Mf2 lj!ll {(f I CvS 
2 (f'sinet-g) 2} c = + Ct-f) + 

ac ac '. 
-;::: = 0 
of af' ,• ..... .... ... . ... 

f f' gsina •J . :- . .. 
~ ..... - . = --= m COSC1 M+m M+msin 2 

C1 
' ,•. ,. 

These 3 problems are tiresome oth~xwise. 

Gibbs-Appell Equations . ! t ,; . -, • o4 00 •' 

. 
are a generalisation of Gauss-Hertz. Consider a system of particles masses 

cartesian coordinates xk. Consider the system usefully described by n coordinates 

q
1 

which are constrained by 
• r A q = o rs s s 

; . 

Define the Gibbsian G L ~ ~~2 · tl 1 t d t th i fo~.ula = 'l -K •'l.k s~nce 1e q are re a e o e x n some •u• 

(\'lhich if explicit q = q (x) then q is c alled a Lagrangian coordinate r but if it 

involves q x and is not integrabl e to q ~ q(x) is called a quasi coordinate), cne . .. 
can write G interms of q1 ... qn and t •e q 1 s and q 1 s. 'I·he con!>traint a llows us 

to write m of the velocities q
1 

be called R.: R.1 • . . tn-m, so no'tl q1 

. 
q in terms of the others. I.et these others 

I 

•.• q can be written;in terms of 
n 
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. 
tn~ and q1 ••• ~' so G can be written in terms of these 

variables p1 , ~i' qj. . -·· 
Now consider the work done by the external forces ' in a virtual . displacement 

(note the constraint reactions X' do no work,but the X's will). 

In terms of the t•s, the work done will be 

but different no. of r's 

Consider 

6(G E L R. ) 
: . 

. r r 
.. 

~ E m ex + 6j( ) 2 ~Un .5(2 ·: = r r r r r 

:: .. : 

EL M. s s 
. 

Em(~) 2 .. 
= ~ + o: mxt.SC EL M.) 

.. : . : 

- ~· I: m(ru<)2 , ... . 

and I:m:S(~ ELM. = 0 as we no\-.r prove. 

The result follows from the fact that if the R. are functions of the x in virtual 

displacement the equation r (m3C - X) ld~ = 0 

implies r m.X~ = rxt.x··= El M. . . . . .. 

for the two terms on right are both rates of doing work by the external forces 

(Differentiate 1: mxMc = Exu~ = E Ai) .. 
.. 

Hence 6 G= 6EL .2. ~. • t • ; ! .. . 

. ·. 

I ;~ = Lr I r 
( Gibbs Appell eqs. 

.. •.• 1 ' . 
! .. .. t· .. -·,· .. 

'··' { 

... 
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u 

~amples motion in pola~ coordinates in plane. convenient coordinates are 

' · l' 

After straightforward algebra 

. ..: ' . -

'.· . .. . , .. 

If radial and transverse forces are R , S the work done in virtual displacement 

is 

Gibbs-Appell eq. are 

aG 
Cli" = R 

mt = rS 

the well known result. 

aG s 
a:i = r 

. _, 

Example (set earlier by L. equation) 

·l· ·. ,, 
... 

•2 
¥ - rO =>< R/m 

-.. 
.. ·- . d 2• . . 

m dt (r 6) = " · .. 
. .. ·.:· 

... ·····-

Cylinder rolls inside another cylinder f ... ·' • • • ~ • ~ . •.• :· ·.1 . 

I 
I 
( 

I 

\ I ~. 
"'-!:=J. _::. ;:' 

Acceleration ofl c. of g. 

is f 

' -· 

· · ) thro' c~oils section of small cylinder 
\£ 2 .. 2 2 4 

dm(r e + r e ) 
i • 

only the ·· terms matter in§ and these are 

. . '· .. : ': . . .. 

.... :! ~ . 

.·, 
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a (e + ~) = be a~ = ce ..·.· c = ·b - a 'f 

drop as no 

:• I 

\'lork done by virtu!il displacement is , .. . . . . '· -: . ~~ :t l. · ; •• • .. ·. r 
!-~ o(c cosa) = - Mg c sine 6 e 

~ ae = - Mg c sin 0 

e 2 9 · e d 1 = - 3 c Sl.Il • Pen u urn. 
·:~ ~:: • .. }.-''~ I ; ,• . , ~ • ;' ~ . :.;._ ~ ; :~~ 

) 
Example Physicists roulette 

Let ~ be angular velocity of sphere 

Rolling means 

, .. . · . . 

table rotates with n(t) 

. . . ·, 
sphere rolls on table 

e.g. is G = (X,Y) 

... • .. · ''·· 

.....:. f ~ : • • 1 ._ ,. • • 

• • { : ~· .. • r • ; •• • ' 0.. ,: ·'... • : , • • :· ' f 

r 

.. ~ 

(these t•s are quasi coordinates, one can't · int~rate them out) 

~ ; . 
: ··' 

which must be written in terms of the correct number of degrees of freedom = 3; 
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• • at = -y + nx + nx l 

A • • • • 2 ··2 
+ :2 (Y - QX - QX) + At3 a 

work done in a virtual displacement 
- 1 J. _ .·: ·• 

'14 : ... : 

Suppose force on centre of sphere is X, Y, Z and couple (P, Q, R) then 

.. ' -. J = <x + Q>o~ + <Y- ~>oy a a 

A special case is Q = constant when force is ME;, Mn, Mj thro centre _w 
3 

= i 3 = constant 

{A + Ma2>x + Any = Ma2~ 
2 = Ma n 

Solid sphere has A = ~ Na
2 and 5 

2 • 5 x + rY = ~ 

n- ~- 5 
;r 7 -?'"' 

If turntable is at a to horizontal, ~ is down-hill coord 

-~ = g s i n a : ifK=~n 
7 
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put x + iy = z 
. 

~ - ik~ = A 
i. 

: • ' : r ~ 

!). 
+ 2 (kt). 

k 

A trochoid. 

Roulette in a storm 
• • ;':J . . ) "'' 

Let the plane now rotate with velocity n about vertical but be at an angle 

a to vertical. A sphere rolls on the plane under gravity. Solve the motion, 

'~elution given on page 209 of Pars §13.6.) .- . 

For supermen only A rough ellipsoid rolls and spins on a perfectly rough table. 

Obtain criteria for the stability of its spinning from the Gibbs Appell equations 

for its general motion. (Pars §13.15) 

For geniuses Obtain criteria for the stability of a bicycle(Whipple Q.J. PandA 

maths 30 1899 312-48) 

The Hamiltonian Formalism 
I Starting with Lagranges equations we introduce 

p =~Land write H = Epq·- L 34 

- ts L(qq) but q can be replaced by q,p in the equations by solving p = aL/Clq. Then 

one has ClH 
--:: ap q + 

... 
0 

and 

::;1i·-~ aq dt 
_aL _ ·aL 5··· 
a<l aq a:q 

~ - p. 
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(.) 

The time derivative of H gives 

dH -= dt i - ... ~ 1.. -

i ' . • l .' I - '" .: 
0 

dH So if H is indepedent of time 3H/ct = o and dt = 0 H = E conserv of energy 

The rate of change of any function Z(p,q) is 

• '\ ·J. 

·' . ·-! . .. 
This is often written 

= [H, Z], Poisson bracket. 

Liouville's equation is conveniently expressed thus: let pr'?bability of finding 

p, q be 

P(p, q, t) = 6(p - P{t)) o {q - Q (t)) 
' ! - • ' I 

where P(t), Q (t) are solutions of Ham.'s eq • .· . . - ! , .. - .. 

aP at+ [H, P] = 0 where H is now written in tenos of phase 

space coordinates p, q 

which is the familiar 

. ,. 
(f- + .!l_ - f. .L) P (r ,v, t) = 0 
ot ar m a~ 

. 1 
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Relativistic Formulation • . J . .. . 

One needs this to handle the e-m field. One way of making sure a theory is 

in accordance with (special) relativity is to make it covariant. This formalism 

recognises that in a general space one has to acknowledge the existence of two 

kinds of vector, the contravariant and covariant. (For full details see text 
#' ~ .. : · ~ :~ · : • • :.· • 

books of relativity.) Write the vector 

(r, ct) = xlJ ll = 1~ 2, 3; 4 

and the vector (r, - ct) = X 
lJ 

': 

: 

.. 

. ., 

, ' I ' . 

'.' " .. 
: 

. ~ . ' .. } ' ... 

A scalar quantity has no free index, the central quan~ity ds2 = dx dxll ).J 

is an example. I one writes· ds2 = g dxl.Jdx Y ).Jr 
. . . . .. ~ ·.· . 

' . .:. '. · .... 

' . 

\ • ~ · - _: ~· • • 1~ • • • '"' : · 

": ' !: - . . 

2 ds is 2 . (arc length) and g).Jv is already familiar in 3D e.g. in pol~ . 

coordinates ' . . . r ~ .•. . ·. . .. 
2 2 2 911 = 1)922 = r ,g33 = v sin e. But in 3D alone one does not have 

~o ~other. with. the difference be~ween x~ and x 
lJ 

The metric tensor g raises and lowers suffices x 
~v lJ 

v = g ,., X 
lJV 

We just quote these r esults and also just quote the Lagrangia n of the 

electromagnetic interac tion. 

Firstly take fixed field and a sk for its L. Hamilton • s prin .• function has to be 

a scalar f ~ ~2dt ±s not. Make it so by considering 
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I ' 

Next e.m. 

From this 

· - J imc ds == -

:, • f 

= -

;;::-: 
J

( 2 ·~ edt 
me . c 

J 2 me dt_ + ~ 

2 
~dt 2 c 

J mv2d~- + 

potential e I <fl(r)dtd3r gives the force eE 

I 
. 

dt d 3r e A.x gives - (v X H} c 

follow Maxwell's equations and the full 

o(~2J 
and 

Lagrangian 

l: f mc2_ } - vc~ dt ··-·· ·- -- * 
.particles 

(~ 
+ l: J e. A dx~ 

]. 1.1 
changes 

,· ' , 

is 

., . . , 

.. 

.. 0 ·: ,. 

. !''.• 

.. ... . .. 

.· 

The Hamiltonian is interesting for one finds that for a particle in a field 

and a= 

;)L 
p = Clq = mv - ~ A 

2 
~ mv 

~ 2 
(p + c A} = ~~--'-

2m 

Lecture notes from Sam Edwards' 1985 course on Analytical Dynamics delivered 
to second year ungraduates in Cambridge. Uploaded by Ben Simons, who took the course!



\. 

u 

H ~ ~v2 reflects fact that rnag.field does no work, but you can't get H's 

equations unless you write H in term of p. 

H for the E. M field is ~-~ },·· ~Ei" +_ H_2 ) d 3r. 
·' f ; 

where H ~ curl A 

Just as (dx, edt) is a four vector, one has (~, cj>} is a fou~ vector • 
. G 

One can compress both the E and vxH tenns i1;~o ~ J A dxl-1 
c l-1 

. . .. -£ 
(Example: \\ork out in detail that 

d aL aL e(! vxH) -= + dt ar ar c . . . , : ' ) ..; . ~ ·. ; ~ 

J 
. . ~ 

f ~d3rdt +r.J A . 
d3rdt} 

}. :· r. ' •' ~ . . 
when L is Adx = e - . r 

~ -) c ·' ·---- ~-- -- ·- . 
\ ,, 

~c - -
There remains L for the field itself. One can combine E, and H into a 4 x 4 

antisymm~~i~ · tensor with 

= a\.1 Av - av \ .. 

and the scalar is F · Fllv. 
lJV 

Tease this out and show it equals 

· . .. _ .. __ _ 

: ·.,. : 1 : - , 4' ~ I _,1
8

1T J(E2 2) 3 - H d :Cdt. 

; . 

.,. 

... 
.. , 
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Continuous fields 

We have taken it that there is no problem in varying a field as against 

a particle, but it is worth spelling it out. 

I • If one has a particle x(t) in a field ~(x(t)) theLagtang~an contains 

.: ....... . .J 9(x(t)}dt 

J.. •• ·:' .· ~ - ... 

and Lagrange~ equations + ~! 
x = x(t). 

A way to write this is to introduce a density function p (x,t) = o{x - x(t)) 

. ' 

p naturally generalizes to the 4 current vector j~ = (jx jy jz cp} 
.• 

where j = x(t)o(x- X(t))c(y- Y(t)o(z- Z{t)} 
X 

.. ' 

j~ = (j, cp). 

Now ·consider the part ofF F~v containing ~alone. I~ is 
}JV 

~ + ~ + 6¢> gives 

6q>(r t) .!...._---~ [
1 d2¢ 

I 41T 2 ~ 2 
C ot 

- ep 

so that L's equation is 

02"' .!.._ .?2 ~ 
v 'I' = - 41Tp + 2 ··. 2 

c at 

.. . ~ . 

and similarly for all the other Maxwell equations. Get clear in your mind the differenc• 

between the coordinate of a charge r(t), and a point in ·Space where one oeasuresa field 

If! (r in t~ Equally if we studied say sound waves , writing in terms of a density (or 

E:<JUc\l!y pressure) fluctuation 
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p = p (r, t) 

c<>nes from J L dt = constant x J [:: - (Vp) 
2
] d

3
rdt 

:·.:. . 

Linear wave equations can be regarded as assemblies of harmonic oscillators. 

Suppose we study $(r,t) in a box, then 

~(r,t} = ~0 + E 
n,m, 1 

cos 1rnx cos mny cos 1T tz ¢1 
L L L n,m,t 

., . -
if we use a cosine fourier series. It is often useful to use cyclic conditions 

when one can employ the complex notation 

. ·. ' 
21Ti 

~(r,t) = ~0 + E e n.r ~ 
n L "'E. 

(The space is now based on 21T rather than 1T and the number of physical states will 

be the same.) In the limit of a large box 

where 

~ (rt) -+ ~0 {-

0 as ~J 9 

$k = V ~ (n) 

- ~volume = L3 

~ f -ik.r d3 ,..k = e -- r 

f 
3 . 21Ti 

+ d ne 
n.r -L 
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7 

The Lagrangian 

becomes 

or 

1 
8'11' 

1 
(2'11')3 

., 37 

It is often useful to recognize that with ~(r,t) real, ~k is ~k 

for radiation with e.g.: 

_, 

H = curl A 

arrl E 1 a A = c at 

if one writes [see Landau and L~ schitzQ. theory of fields Chapter 4; but 

beware they simplify some things] .· · .. · .. . . ) ~· 

~(aeikr * -ikr A = ~ k + ak e ) 
k 

1 ik _ k x -ikr 
- - ~ ( k . r a -· e . E = ~ a- .e k ) c k k . 

H = i I: (k x ak ikr * -ikr e - k X a e - ) 
k k 

8 * If one writes Qk = (ak + ak) 
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u 

The Hamiltonian becan~s 

()H • 
and aQ = - P 

. ' 
is 

aH • ap = Q · 

C 2k2Qk -- 0 h . t e wave equat1.on. 

E = 2 ;1r ck (Qk sin k.r + pk 

H = 2 ~ E ~ { ck (!'.xQk) sin kr 

cos 

.. 

+ (kxPk) COG·' kr}. 

kr) 

Thus wave motion :: assembly of harmonic oscil lators 

The quantum mechanics stemming from ·a wave Hamiltonian· therefore has integer 

energy levels and corresponda to an assembly of photons, ; phononq,electron.s , , 
,.... 

mesoJ ns etc. etc. 

Hamilton-Jacobi Theory (Following L&L §43) 

or as 

proceed as 'vre did in the beg inning 

by parts, two terms 

[ar. .Jf l t 
os = Laer ocrj

0 
+ 

os = r poq 

Jt [ oL d a'i) 
0 

aq - ctt aciJ &qt 

+- 0 by L' s eqs --t-

aq = P 
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' . 

0 

. . 

dS Directly one has - = L dt 

so ds as t" as 
dt = at'+ ~.. aq q 

as • = + Epq at 

as 
or at = - H 

i.e. dS = Epdq - Hdt 

If one now writes S = f(Epdq- Hdt), os = 0 

gives Hamilton's equations. 
as Since at + H (p, q, t) = 0 

and 
as · 

p = aq one gets 

as 
--· t) = 0 aq I 

s 

The whole of ~~alytic dynamics is here expressed as a partial differential equation, 

and it is employed in various complicated orbit problems. SchrOdinger had this 

equation in mind when he introduced his equation. 

Put 

Ei__ 
at -

-iS~ 1jl ::::: e 

i 
1'i 

lt = aq 

= + i Hfq· H1 alP) ''' 1'i . I 1jl aq .,.. 

i as - --lf! -!1 aq 
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This is the classical version of Schrodinger's eq. 1i is only a scale parameter, 
I 

and this equation is of course nothing but a mf.m~pulation of H-J eq. - · 
Quantum mechanics has 

a~ a at = i/1"1 H(q, ii'i' aq ) \)! which really is different. 

.. \ Schrodingers equation . * -~ H (q, i1l ~q) ~ = 0 

the Hamiltonian version of ~~.mech. There is a Lagrangian version, noted by 

_..irac and exploited by Feynman which says that 

~(q,t) = J e -iSA'f (oq) $(q',t1 ) 

where (oq) means integrate over all paths starting at q',t' ending at q,t, weighted 

. h iS/fl......: .. l WLt e u now non trLVla . 
) 

To prove this is equivalent to the Sch. eq. Solve the Schrodinger equation 

for a very ~hort time interval. We can do this by saying over small time interval 
a q is almost a constant, so if we fourier transform aq by taking 

() 
~(q,t) = f G(q ql ttl) ~(qltl) dql 

t;tl 
q+ql q-ql 

G is equally G(--2--, --2--; t t 1) 
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. ' 

u 

and one can approximate 

q+q 
G(--1 

2 

q-q 1 
2 1 t - t 1 ) 

q+ql 
by putting - 2- q and fourier transform on q - q 1 

_q 
~ 

G({q:ql}, 
·"'-

· " .: . . · · . . 

.. ·' 

Break up tt' into a large nrunber of little intervals t 1t 2 

have q1q2 ... p1p 2 ..• and drift this into q(t) p(t) 

, .. . ·~ 

-+· fd path in q 
d path in .p e 

2 • 

--i 

if dp dp2 
1 

e 11 t H(p. ,q.) (t.-ti+l) . ~ ~ ~ 
l. 

.. 
(pq - H)dt 

t' 
~l(q't') 

at each stage 

: :.·.·. 

-. 

) . 

In particular if H is ·~+ U(q) one can 'complete the square' to integrate out p 
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.-! f (p q)2 -! J<mq2 - U(q)). 
m -t'i 2 

p ~ p + q/m drops out since J dp no longer contains the motion 

, . .. r 
I e 

- ~ . L(qq)dt 
'fl .I ljl(q,t> = ljl(q't> (oq) 

all paths from q't' to qt. 

This discussion is far to brief to be understandable on its own; further 

details in modern q.m books or Fe~an and Hibbs. The important point is that 

Q. Mech. also has both Hamiltonian 

and Lagrangian 

formulations. 

!Y!_ _. iS/ti 
Clljl' - e 

Manpertius principle ~s known as principle of least time. I have never found 

this useful and so put it in only for completeness 

U oS = - H o t 

but H = E for conservative system 

oS == - Eot 

S = J ~ p q dt - Et 
0 

.. + sometimes called action, sometimes abbreviated action 
~ 

Since OS = -Eot 

• 
Epq dt = 0 

a • • 
Now p = oq L(qq) and E(q,q) = E constant. Hence if we write dt in terms of 

q and q, one has p in terms of q and dq, with E as parruneter and a new variational 

principle. For example if 
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' · 

•2 L = ~ mq - U(q) 
. 

p = mq 

\ •2 
E = ~ mq + U 

I rpq dt = I I 2CE-u> dq 

. i.e. 6 I 12m(E-U) dq = o. 

u 
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1 
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Q /:-9 - ../- ·~ ·1 ~I 1. + 0( 2 
2 L _.---7' 0 

I 

~ -( o.._;c,,;r <M:, & + ·"'!\2 c'J <A,'' ( 0 -i- ot}) -~ I 

L 1- ll 

~ ('~t 1 Ct-:!!_ !v~.-;'- r t.-') (D 1-'Xj_. 
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---------· 

/ 
u 

i 

I {)-=- f) +,f 
i ' l. I 

J 
L 

(' (1_, . 1-t.. • ...._{'-
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.. -
. . 

.I L 
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