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16.4 Problem Set IV

1. Operator methods in quantum mechanics: The following problem
combines the practice of a number different methodologies covered in this
course. Here we address the excitation spectrum of a quantum mechani-
cal spin chain. It provides a counterpart to the vibrational modes of the
quantum harmonic chain considered in lectures. Here we will address the
problem in two different ways.

In strongly correlated solid state systems, the Coulomb interaction can
result in electrons becoming localized to the sites of the underlying crys-
talline lattice – the Mott transition. However, in these insulating ma-
terials, the spin degrees of freedom carried by the constituent electrons
can remain mobile – spin fluctuations can be exchanged between neigh-
bouring electrons without motion of charge. Such systems are described
by quantum magnets, Ĥ =

∑
m!=n JmnŜm · Ŝn, where exchange cou-

plings Jmn denotes the matrix elements coupling lattice sites m and n.
Since these matrix elements decay rapidly with distance, it is often legit-
imate to restrict attention to neighbouring sites. Although these matrix
elements are typically positive (leading to an antiferromagnetic cou-
pling), in the following we will consider them negative leading to ferro-
magnetism – i.e. neighbouring spins want to lie parallel. Consider then
the one-dimensional spin S quantum (Heisenberg) ferromagnet,

Ĥ = −J
∑

m

Ŝm · Ŝm+1 ,

where J > 0, and the spins obey the quantum spin algebra , [Ŝα
m, Ŝβ

n ] =
i!δmnεαβγŜγ

m.

(a) Making use of the spin commutation relations and Ehrenfest’s the-
orem, show that, in the Heisenberg representation, the spins obey
the equations of motion,

!dŜm

dt
= JŜm × (Ŝm+1 + Ŝm−1) ,

where we suppose that the boundary conditions are periodic, i.e.
Sm+N = Sm.

(b) For large spin S, we may take the spin expectation values to be
defined by their classical values, 〈Ŝm〉 = Sm. Moreover, if we are
interested in low-energy excitations of the spin chain, only modes
of long wavelength contribute (cf. the vibrational modes of the
harmonic chain). In this case, we may develop the Taylor series ex-
pansion, Sm+1 = Sm+∂Sm+ 1

2∂2Sm+· · ·, where the lattice spacing
is taken as unity. In doing so, show that the leading contribution
to the equations of motion in the gradient expansion is given by,

Ṡ = JS× ∂2S .

(c) Show that the solution to this equation is given by S(x, t) = (c cos(kx−
ωt), c sin(kx−ωt),

√
S2 − c2) and determine the dispersion relation,

ω(k). Sketch a “snapshot” configuration of the spins in the chain.
These low energy modes of the quantum spin chain are known as a
spin waves and mirror the phonon excitations of the quantum harmonic

Advanced Quantum Physics



16.4. PROBLEM SET IV 217

chain. Notice that the dispersion relation in this case has a quadratic
dependence on k (cf. non-relativitic particles) as opposed to the lin-
ear dependence of the phonon spectrum. If you are feeling energetic,
you might contemplate the spin wave modes for the antiferromag-
netic chain where the dispersion becomes linear. Let us now consider
an alternative approach to the spin wave spectrum which follows an
operator-based formalism.

(d) Defining the spin raising and lowering operators, Ŝ± = Ŝx ± iŜy,
show that the ferromagnetic Heisenberg model can be written as

Ĥ = −J
∑

m

{
Ŝz

mŜz
m+1 +

1
2

(
Ŝ+

mŜ−m+1 + Ŝ−mŜ+
m+1

)}
.

Then, making use of the Holstein–Primakoff spin representation In lectures, we have discussed the
Fourier series expansion,

f(x) =
1√
L

∑

k

fkeikx

fk =
1√
L

∫ L

0
f(x)e−ikx

In the following, we are deal-
ing with a discrete lattice where
we have to consider the discrete
Fourier representation,

fn =
1√
N

∑

k

fkeikn

fk =
1√
N

∑

n

fne−ikn .

(defined on page 192), Ŝ−m = !
√

2S a†m(1 − a†mam
2S )1/2, Ŝ+

m = (Ŝ−m)†,
and Ŝz

m = !(S−a†mam) where [am, a†n] = δmn, show that the Hamil-
tonian can be expanded as a bilinear (i.e. to quadratic order) in
the raising and lowering operators,

Ĥ = −JNS2 + S
∑

m

(a†m+1 − a†m)(am+1 − am) + O(S0) .

(e) Being bilinear in operators (i.e. quadratic), the Hamiltonian can
be diagonalized by discrete Fourier transformation. With periodic
boundary conditions, a†m+N = a†m, defining

a†k =
1√
N

N∑

m=1

eikma†m, a†m =
1√
N

∑

k

e−ikma†k ,

where the sum on k = 2πn/N , runs over the N integers n =
−N/2 + 1,−N/2 + 2 · · ·N/2, show that the transformed operators
obey the commutation relations, [ak, a

†
k′ ] = δkk′ . In the Fourier

representation, show that

Ĥ = −JNS2 +
∑

k

!ωka
†
kak + O(S0)

where ωk = 2JS(1 − cos k) = 4JS sin2(k/2) represents the disper-
sion of the spin excitations.

Measurements of the spin-wave
dispersion relations for the ferro-
magnet La0.7Sr0.3MnO3.

In the long wavelength limit, k → 0, the energy of the excitations
vanishes, ωk → JSk2. These low-energy excitations, known as spin
waves or magnons, describe the elementary spin-wave excitations
of the ferromagnet. Taking into account terms at higher order in the
parameter 1/S, one finds interactions between the magnons.

2. The following problem involves some revision of time-dependent perturba-
tion theory and then applies the methodology to the problem of an induced
transition in a hydrogen atom.

Suppose that a system is prepared in an energy eigenstate ψ0 at time t =
0 when a weak perturbation V (t) is applied. Show that the probability
of finding the system in state ψn at time t is given approximately by
|cn(t)|2 where

cn(t) =
1
i!

∫ t

0
dt′ei(En−E0)t′/!〈ψn|V (t′)|ψ0〉 .
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At times t > 0, an electric field Ez = E0 exp−t/τ is applied to a hydrogen
atom, initially prepared in its ground state. Working to first order in
the electric field, find the probability that, after a long time, t ' τ , the
atom is in (i) the 2s state, and (ii) one of the 2p states (state which
one?).

3. This problem addresses the question of spontaneous emission in hydrogen.

Use the formula for the Einstein A-coefficient derived in class to calculate You will need the same matrix
elements as you computed in the
previous problem.

the lifetime of the 2p state of atomic Hydrogen.

Without detailed evaluation of the matrix element, explain why the 3s
level of hydrogen has a lifetime roughly 100 times longer than the 2p
level. And why is the lifetime of the 2s level very much longer than 2p,
by a factor ∼ 108?

4. Scattering theory: The following problem revises the derivation of the Born
approximation and then applies it to the high energy scattering from an
attractive square well potential.

Show that the Born approximation yields the following expression for
the elastic scattering of a particle of mass m and momentum !k from a
spherically symmetric potential V (r),

dσ

dΩ
=

(
2m

!2K

)2 ∣∣∣∣
∫ ∞

0
V (r)r sin (Kr)dr

∣∣∣∣
2

,

where K = 2k sin(θ/2) and θ is the angle through which the particle is
scattered.

Obtain the differential cross-section for scattering from a potential,

V (r) =
{
−V0 r ≤ a
0 r > a

and verify that the scattering is isotropic when the energy of the incident
particle or the size of the scatterer is sufficiently low, so that Ka * 1.
Obtain an expression for the total cross-section in this limit.

5. Scattering theory: The following problem involves the application of the
partial wave scattering method to a simplified model of a nucleus.

As a crude model for an effective nuclear potential which binds together
protons and neutrons, consider a repulsive radial shell potential, V (r) =
!2

2mU0δ(r −R).

(a) Calculate the s-wave scattering phase shift as a function of U0.
(b) Assuming that U0 ' 1/R and U0 ' k, show that if tan(kR) is not

close to zero, the phase shift resembles that of a hard sphere.
(c) Continuing with these assumptions show that, if tan(kR) is close

(but not equal to) zero, resonance is possible (i.e. the cross sec-
tion reaches its maximum value). Compare the resonance energy
with that of a bound state of the spherical shell with an infinitely
impenetrable wall. This is an example of a “scattering resonance”,
when the incident energy matches a quasi bound-state.
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6. †Relativistic quantum mechanics: The following problem establishes an im-
portant relation in the study of relativistic covariance in lectures.

In lectures, it was shown that Lorentz covariance of the Dirac equation
relies on the condition S(Λ)γµS−1(Λ) = (Λ−1)µ

νγν . For an infinitesimal
proper Lorentz transformation Λµ

ν = gµ
ν+ωµ

ν , S(Λ) = I− i
4Σµνωµν+· · ·,

where ωµν and Σµν are antisymmetric. Show that, to leading order in
ω, this condition translates to

[γµ,Σαβ ] = 2i
(
gµ

αγβ − gµ
βγα

)
.

Show that the following represents a consistent solution, Σαβ = i
2 [γα, γβ].

7. Relativistic quantum mechanics: In lectures, we used the relativistic covari-
ance of the Dirac equation to deduce the existence of an intrinsic angular
momentum known as spin. In the following problem, we can establish the
consistency of this construction by showning that the Dirac Hamiltonian
commutes with the total angular momentum, Ĵ.

Verify that the Dirac Hamiltonian Ĥ = α · p̂+ βm commutes with both
the helicity operator S · p/|p|, and the angular momentum Ĵ = L̂ + S
where L̂ = x× p̂.

8. †Relativistic quantum mechanics: The following problem relates to the vac-
uum instability and the stimulation of particle/antiparticle pairs.

Following on from the discussion of the potential step in lectures, con-
sider the problem of the transmission through a potential barrier of width
a and hight eV . Applyly the boundary conditions at the edge of the bar-
rier, show that the transmission probability is given by

|t2| =
∣∣∣∣cos(p′a)− i sin(p′a)

(1 + ζ2)
2ζ

∣∣∣∣
−2

,

where ζ = p′(p0+m)
p(p0′+m)

, E ≡ p0, and E′ ≡ p0′ = E − eV . Analyse the

transmission probability in the energy ranges p0′ ≡ E′ > m, −m < E′ <
m, and E′ < −m. In the third regime, explain why a condition of perfect
transmission can be obtained.
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