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16.3 Problem Set III

1. Atomic structure: The following question begins with a recapitulation of the
leading relativistic corrections to the Schrödinger Hamiltonian of hydrogen-
like atoms.

Explain the physical origin of the following terms in the Hamiltonian for
one-electron atoms:
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Here m denotes the electron mass, V the electrostatic potential generated
by the nucleus, and Z the atomic number.

The hydrogenic radial wavefunctions have the form, Explicit evaluation of numerical
factors is not required.
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where a0 denotes the Bohr radius and Gn! is a polynomial function of its
argument. Show that the expectation values of the energies associated
with the three terms listed above all have the same dependence on Z.
(Part IB Advanced Physics 1993.)

2. Atomic structure: The following problem addresses the electron configura-
tion of multi-electron atoms. In completing this question, you should remind
yourself of the physical origin of the Hund’s rules.

Determine the possible spectroscopic terms, 2S+1LJ , for each of the fol-
lowing electron configurations: (2s)(3p), (2p)2, (3d)2, (3d)10, and (3d)9.

Using Hund’s rules, determine the angular momentum quantum numbers
of the ground state of Sm, which has electron configuration (4f)6.

3. Atomic structure: The following problem addresses the interplay between
LS and jj coupling.

The ground state of Ge has the configuration (4p)2 and spectroscopic
term 3P0. Explain the meaning of this notation and state the assump-
tions about atomic structure on which it is based.

Derive the allowed states of a (3p)1(4s)1 configuration in (i) LS coupling
and (ii) jj coupling, sketching an energy level diagram in each case.
Explain the interactions which give rise to the various energy splittings.

For a certain element, the energy levels given right, which are specified
relative to the ground state, are known to belong to a (6p)1(7s)1 config- (a) 4.334 eV

(b) 4.375 eV
(c) 5.975 eV
(d) 6.130 eV

uration. Deduce what you can about the quantum numbers appropriate
to each energy level, given their relative magnitude and the fact that
only levels (b) and (d) decay to the J = 0 ground state by electric dipole
transitions.
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4. †Atomic spectra: By drawing upon your knowledge about the properties
of multielectron atoms, the following problem requires the decipher of the
atomic spectra of sodium.

The three groups of lines shown right, whose frequencies are given in I Doublets with decreasing dou-
blet splitting:
0.50899 0.90782 1.05086 1.11848
0.50847 0.90765 1.05079 1.11845

II Doublets with constant dou-
blet splitting:
0.26340 0.48713 0.58225 0.63142
0.26288 0.48662 0.58174 0.63090

III Triplets, with two lines some-
times unresolved:
0.36635 0.52756 0.60207 0.64267
0.365833 0.52704 0.60165 0.64215
0.365831

units of 1015 Hz, are observed in the emission spectrum of atomic sodium.
By identifying the spectral lines with specific states of sodium, make an
index of the associated transitions. In doing so, you will find it helpful to
address the following questions: (i) What are the appropriate quantum
numbers for the ground state and low energy excited states of sodium?
(ii) Which energy levels are split by the spin-orbit interaction? (iii) How
(qualitatively) does the spin-orbit coupling depend on n? (iv) Which
transitions are allowed by the dipole selection rules?

Draw an energy level diagram, taking the (3s) state as the zero of energy,
and answer the following questions:

(a) What is the energy difference between the (5p) J = 3/2 and J = 1/2
states in sodium?

(b) Estimate the first ionization energy of sodium.

(c) What are the relative importances of the &-dependence of the electron-
electron energy, and the j-dependence of the spin-orbit energy in
the n = 3 and n = 6 shells?

5. Zeeman effect: This problem involves the study of the infleunce of a weak
magnetic field on the spectrum of a multielectron atom. Here we are in-
terested in exploring the interplay between LS coupling and the influence of
the external field.

For an atom characterised by LS coupling, and subject to a weak uniform
magnetic field, derive the expression for the Landé g-factor,

g = 1 +
J(J + 1)− L(L + 1) + S(S + 1)

2J(J + 1)
.

In a Zeeman experiment, the 3S1 →3P1 emission of an ensemble of such
atoms is observed in the presence of a weak magnetic field B. Describe
the resulting Zeeman structure of the atomic levels, and indicate which
transitions amongst the split levels are allowed in an electric dipole tran-
sition. Sketch the form of the line spectrum seen in some general direc-
tion before and after the field is applied. Label, in units of µBB where
µB is the Bohr magneton, the positions of the components relative to
the energy of the unperturbed transition. Hint: Consider how the elec-

tric field couples to the elec-
tric dipole and how this trans-
lates to constraints on the al-
lowed change in MJ .

If the emission is viewed perpendicular to the direction of the magnetic
field, how many lines will be observed and what polarization states will
they have?

6. Atomic structure: As well as the interaction between the spin and orbital
degrees of freedom of the electron which follow from the relativistic cor-
rections, the magnetic field generated by the nuclear magnetic momentum
also lead to corrections to the electron Hamiltonian. These corrections are
known as hyperfine coupling. The following problem involves exploring the
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evolution of the hyperfine spectrum of the hydrogen atom in the presence
of a weak magnetic field.

The magnetic part of the Hamiltonian for a hydrogen atom in the 1s
state, in the presence of a constant magnetic field B along the z axis,
may be cast in the form

Ĥ = B
(
µeσ

(e)
z + µpσ

(p)
z

)
+ Wσ(e) · σ(p) ,

where the superscripts e and p refer to the electron and proton, the vector
components of σ are the Pauli spin operators, µe,p are the respective
magnetic dipole moments, and W is a constant.

(i) Explain the physical origin of each term in the Hamiltonian.
(ii) Using as a basis the states | ↑e〉 ⊗ | ↑p〉, | ↑e〉 ⊗ | ↓p〉, | ↓e〉 ⊗ | ↑p〉,

| ↓e〉 ⊗ | ↓p〉, and neglecting the small term in µp, show that the Ĥ
may be represented by the matrix





b + W 0 0 0
0 b−W 2W 0
0 2W −b−W 0
0 0 0 −b + W



 ,

where b = µBB. (Explain why µp is small in comparison to µe.)
(iii) Determine the energy levels and sketch their evolution as a function

of B, labelling them with as much information as possible about
the total angular momenta of the states.

7. Molecular structure: This problem concerns the application of the LCAO
method to molecular bonding in the H+

3 ion.

Explain what is meant by the Born-Oppenheimer approximation and
discuss how molecular wavefunctions can be formed within this approx-
imation by using the Linear Combination of Atomic Orbitals (LCAO).

The H+
3 ion exists as an isosceles triangle (distance d12 = d23 '= d31),

with the internal bond angle 60◦ ≤ θ ≤ 180◦. Treating this ion in the
LCAO approximation, introducing the 1s basis state wavefunctions, |ψi〉
for the ith atom, show that the electron energy levels are solutions of the
secular equation

∣∣∣∣∣∣

α− E β γβ
β α− E β
γβ β α− E

∣∣∣∣∣∣
= 0 ,

where α = 〈ψ1|Ĥ|ψ1〉 = 〈ψ2|Ĥ|ψ2〉 = 〈ψ3|Ĥ|ψ3〉, β = 〈ψ1|Ĥ|ψ2〉 =
〈ψ2|Ĥ|ψ3〉, and βγ = 〈ψ1|Ĥ|ψ3〉, where Ĥ is the Hamiltonian for the ion.
In this case, as an approximation, you may ignore the overlap integrals,
〈ψi|ψj〉. Find the energy levels and sketch them in the range 0 ≤ γ ≤ 1.
Show that the ground state must be a spin singlet, and predict which
value of γ should be most stable. Qualitatively, how would you expect
γ to vary with θ, and hence, what would you expect to be the value of
θ in the most stable configuration? [Note that the matrix element β is
negative.] (Part II 1998)
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Figure 16.1: Infra-red rotation-vibration band spectrum of HCl measured in Hz.

8. Molecular structure: This problem explores the relative influence of valance
bonding in H2.

In the pure valence bonding approximation, the electronic ground state
wavefunction of the H2 molecule is given by

ψVB = C[ψa(r1)ψb(r2) + ψb(r1)ψa(r2)] ,

where ψa and ψb are the (real) ground state wavefunctions of the two
hydrogen atoms.

(i) Express the normalization constant C in terms of the overlap inte-
gral S =

∫
d3r ψaψb.

(ii) Express ψVB in terms of the molecular bonding and antibonding
orbitals, (σg(1), σg(2)) and (σ∗u(1), σ∗u(2)), defined in lectures.

(iii) Hence find a second molecular state ψ⊥ orthogonal to ψVB and
interpret it in terms of covalent and ionic components.

(iv) Use the result S = (1 + ρ + ρ2/3)e−ρ with ρ = R/a0 * 1.6 to
estimate the configuration mixing (i.e. the relative contributions of
the VB and ionic bond) in H2.

9. Molecular spectra: This question addresses the features of the rotation-
vibration spectra of the diatomic molecule HCl. It also provides an exercise
in the application of selection rules to radiative transitions.

Explain the following features of the rotation-vibration absorption spec-
trum of HCl shown in Fig. 16.1: (i) the missing peak at the centre, (ii)
the double peak structure, (iii) the line spacing and why it is uneven,
(iv) the intensity as a function of wave number. Determine the values of
as many molecular parameters as you can from the spectrum.
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