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16.2 Problem Set II

1. Perturbation theory: This question provides a very instructive applica-
tion of approximation methods in quantum mechanics. The first part of the
problem is straightforward and addresses the perturbative series expansion
of the anharmonic oscillator. However, the same problem can be used to
illustrate the failure of perturbation theory. The second part of the problem
demands an application of the WKB method and illustrates the origin of
the limitations of the perturbative scheme.

Briefly summarize how perturbation theory can be used to obtain ap-
proximate values for the energy of a non-degenerate state when an exact
solution of the Schrödinger equation is unavailable.

(a) An anharmonic one-dimensional oscillator for a particle of mass m
has potential V (x) = 1

2mω2x2 + λx4, where λ > 0 is small. Using The ground state of the un-
perturbed oscillator is given by
ψ0(x) = (mω

π! )1/4 exp(−mωx2

2! ).
perturbation theory, determine the ground state energy to first or-
der in λ. Consider how your result can be obtained using the ladder
operator formalism.

†(b) When λ < 0, the anharmonic oscillator provides an instructive
example illustrating the failure of perturbation theory. No matter
how small is the value of λ, the potential minimum at x = 0 can
only be metastable: For x large enough, the potential eventually You may note that

∫ b

0
dx x(b2 − x2)1/2 =

b3

3
.

turns negative providing an escape route for the particle from the
harmonic potential. For this tunneling problem, make use of the
WKB method to estimate (roughly) the tunneling probability and
thereby elucidate the origin of the failure of the perturbation series
expansion in λ.

2. Perturbation theory: In addition to relativistic corrections, the Hamil-
tonian of the hydrogen atom is also perturbed by the finite range of the
nucleus. The following problem exploits perturbation theory to explore the
scale of such corrections. Hint: You can, and should, sim-

plify the integrals considerably
by noting that the size of the nu-
cleus is much smaller than the
atomic Bohr radius, i.e. b " a0.
You may note that,
ψ2s =

√
1

8πa3
0

(
1− r

2a0

)
e−r/2a0 ,

ψ2p0 = re−r/2a0√
32πa5

0
cos θ,

ψ2p±1 = re−r/2a0√
64πa5

0
e±iφ sin θ.

The fact that the proton is not a point charge influences the energy levels
of the hydrogen atom. This problem may be treated (for simplicity)
by regarding the proton as a uniformly charged hollow spherical shell
of radius b = 5 × 10−16m. Show that the change in the electrostatic
potential energy corresponds to introducing a perturbation

Ĥ(1)(x) =
e2

4πε0

(
1
r
− 1

b

)
, r < b ,

into the normal Schrödinger equation for the hydrogen atom. Using first
order perturbation theory, estimate the energy shifts of the hydrogen 2s
and 2p states and comment on your findings. Suggest why measurement
of such energy shifts is not a good way of studying the proton charge
distribution.

3. Perturbation Theory:This problem shows how perturbation theory may
be used to estimate the polarizibility of the hydrogen atom in its ground
state. (The induced dipole moment in an applied electric field E is αε0E
where α is the polarizibility.)
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Working to second order in field, E, show that induced polarization of
the ground state |0〉 is given by α = 2e2

ε0

∑
k "=0

|〈k|z|0〉|2
Ek−E0

, where Ek is
the unperturbed energy of state |k〉. Show that the same result may
be obtained from the perturbed wavefunction to first order in E and
evaluating the expectation value of the induced electric dipole moment. To derive the matrix element,

〈0|z2|0〉, you will need the
ground state of the hydrogen
atom, |0〉 = ( 1

πa3
0
)1/2e−r/a0 .

Evaluation of α is tedious, but a useful upper bound may be obtained by
noting that Ek ≥ E1, where E1 is the energy of the first excited. Using
this result, show that α ≤ 64πa3

0
3 . Compare this with the experimental

value of α = 8.5× 10−30m3.

Variational method:The following three problems involve straightfor-
ward applications of the variational state analysis.

4. Give an account of the variational method for estimating the ground
state energy of a quantum mechanical system. Explain how the method
may also be applied to excited states.
Use a trial wavefunction of the form,

ψ(x) =
{

A(a2 − x2) −a < x < a
0 otherwise ,

to place an upper bound on the ground state energy of the one-dimensional
harmonic oscillator with potential V (x) = mω2x2/2 where m is the mass
of the particle and ω the oscillator frequency. Compare your answer with
the exact result, and comment.

5. By taking a trial wavefunction proportional to exp(−βr) where β is a
variational parameter, obtain an upper limit for the ground state energy
of the H atom in terms of atomic constants. Comment on your result.

6. (a) E1 and E2 are the ground state energies of a particle moving in Hint: Use the wavefunction of a
particle moving in V2(r) as a trial
wavefunction for potential V1(r).

attractive potentials V1(r) and V2(r). Using the variational method,
show that E1 ≤ E2 if V1(r) ≤ V2(r).

(b) Consider a particle moving in a one-dimensional attractive potential
V (x), i.e. a potential such that V (x) ≤ 0, for all x and V (x) →
0, as |x| → ∞. Use the variational principle with trial function
A exp(−λx2) to show that the upper bound on the ground state
energy is negative, and hence that for any such potential at least
one bound state must exist.

7. The following question addresses the constraints imposed by particle in-
distinguishability on the allowed spin and spatial states of a two-particle
quantum mechanical system.

Discuss the special considerations which apply to systems of indistin-
guishable particles in quantum mechanics, giving examples where they
lead to observable consequences.
Two non-interacting particles of mass m move in one dimension, their
positions given by x1 and x2. The potential is given by

V (x) =
{

0 0 < x < L
∞ otherwise .
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Show that the energy of the system is of the form E = (n2
1 + n2

2)ε where
n1 and n2 are integers and find an expression for ε. Consider the state
with E = 5ε for each of the following three cases:

(a) spin-zero particles;

(b) spin-1/2 particles in a spin singlet state;

(c) spin-1/2 particles in a spin triplet state.

In each case, what is the symmetry of the spin and spatial parts of the
wavefunction? Hence write down the spatial wavefunction, and sketch
the probability density |ψ(x1, x2)|2 in the (x1, x2) plane.

Describe qualitatively how the energies of these states would change if
the particles carried electric charge and hence interacted with each other
(an example of the exchange interaction).

8. Together with the constraints imposed by particle indistingishability, a sec-
ond feature of many-body problem in quantum mechanics is their typical
analytical intractability! In the vast majority of interacting problems, some
approximation is necessary. The following question involves an application
of perturbation theory to a two particle system.

Two identical spin-zero bosons are placed in a one-dimensional square
potential well with infinitely high walls; V = 0 for 0 < x < L, otherwise
V = ∞. The normalized single-particle energy eigenstates are given by
un = (2/L)1/2 sin(nπx/L).

(a) Find the wavefunctions and energies for the ground state and the
first two excited states of the system.

(b) Suppose that the two bosons interact with each other through the
perturbative “contact interaction”,

Ĥ ′(x1, x2) = −V0Lδ(x1 − x2) .

Compute the the ground state energy to first order in V0.
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