
Chapter 16

Problem sets

Before starting these problems, you might want to revise some of the examples
from the Part IB Quantum Physics course. The examples marked with a † are
typically more challenging and are the ones to omit if your time is very short, or if
you are finding the course difficult. Some of the questions involve a routine piece
of bookwork. This is the kind of thing you will have to do in the exam. You are
strongly encouraged to do these parts and get feedback in supervisions.

16.1 Problem Set I

1. Quantum mechanics in one-dimension: The following question introduces
the concept of a scattering matrix (or S-matrix) in relation to scattering
from a potential in one dimension. These concepts will prepare the ground
for the study of the three-dimensional scattering problem addressed later in
the course.

Consider a localized potential in one-dimension (i.e. a potential that is
non-zero only over a finite region in space) subject to a beam of quantum
particles incident from the left and from the right (see figure). Outside
the region of the potential, we know that the wavefunction of the par-
ticles is described by a plane wave of wavevector k =

√
2mE/�. The

relation between the incoming and outgoing components of the plane
wave are specified by a scattering matrix (commonly referred to as
the (S-matrix)), i.e. referring to the figure,
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�a) Consider the action of the probability current operator on a plane
wave and hence show that conservation of probability implies that
|A|2 + |D|2 = |B|2 + |C|2. Show that this condition is equivalent to
demanding that the S-matrix is unitary, i.e. S†S = �. For matrices
which are unitary, the eigenvalues have unit magnitude,1 eiθ – i.e.
two scattering phase shifts, in general functions of k, completely
describe the scattering in one dimension.

For the case of a symmetric potential, V (x) = V (−x), the S-matrix
assumes the simple form

S =

�
t r
r t

�

�

1The proof is as follows: for an eigenvector |v�, such that S|v� = λ|v�, we have the norm
�v|S†S|v� = |λ|2�v|v� = �v|v�, i.e. |λ|2 = 1.
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where r and t are the reflection and transmission amplitudes.

�b) Show that unitarity demands that rt∗ + r∗t = 0 and |r|2 + |t|2 = 1,
and hence that |r ± t|2 = 1. Find θ1 and θ2 in terms of r and t.
What is the difference in phase between r and t?
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�c) By matching the boundary conditions, show the elements of the S-

matrix for the scattering of particles of mass m and energy E = �
2k2

2m
from a δ-function potential, aV0δ(x), are given by r = − γ

γ+ik and

t = ik
γ+ik , where γ = maV0

�2 . Obtain the corresponding scattering
phase shifts.

2. Operator methods: This problem addresses simple relations that follow from
the orthogonality of eigenfunctions and the time-development of wavefunc-
tions.

The Hamiltonian Ĥ has two normalized eigenstates |ψ1� and |ψ2� which
correspond to different eigenvalues E1 and E2.

(a) Show that |ψ1� and |ψ2� are orthogonal.

(b) For an observable Â where Â|ψ1� = |ψ2� and Â|ψ2� = |ψ1�, calculate
the eigenvalues and eigenvectors (which are combinations of |ψ1�
and |ψ2�).

(c) Assuming that at t = 0 the system is in the state |ψ(t = 0)� =
1√
2
[|ψ1� − |ψ2�], find the state of the system |ψ(t)� at time t and

show that the probability of the system returning to its initial state
is given by P = cos2[(E1 − E2)t/2�].

3. Operator methods: This question relates to the probem of coherent or
Glauber states. It is included in the problem set as it presents a useful
arena in which to practice operator methods. The aim of the problem is
to explore properties of coherent states and establish their connection to
classical dynamics of the harmonic oscillator.

�a) By using the commutation relation [a� a†] = 1, show that Hint: To prove this result most
straightforwardly, consider the β
derivative of this expression.e−βa†aeβa† = β + a .

Using this result, show that |β� = Neβa† |0� is a coherent state, i.e.
a|β� = β|β�. Finally, show that the normalization, N = e−|β|

2/2.

�b) Calculate the expectation values, x0 = �x̂� and p0 = �p̂�, with Hint: Remember how creation
and annihilation operators are
related to the phase space opera-
tors x̂ and p̂. Also, note that the
Hermitian conjuate of the eigen-
value equation a|β� = β|β� leads
to the relation �β|a† = �β|β∗.

respect to |β� and, by considering �x̂2� and �p̂2�, show that

(Δp)2(Δx)2 =
�

2

4
�

where Δp = p̂− �p̂� (similarly x).

�c) To determine the coordinate representation to the coherent state,
ψ(x) = �x|β�, it is helpful to revert back to the expression for
a as a differential operator. Show that the eigenvalue equation
a|β� = β|β� translates to the equation,

�

x +
�

mω
∂x

�

ψ(x) = βψ(x) .
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Show that this equation has the solution

ψ(x) = N exp

�

−
(x− x0)2

4(Δx)2
+ i

p0x

�

�

�

where x0 and p0 are defined in part (b) above.

�d) By expressing |β� in the number basis, show that

|β(t)� = e−i ωt

2 |βe−iωt� .

As a result, deduce expressions for x0(t) and p0(t) and show they
represent solutions to the classical equations of motion. How does
the width of the coherent state wavepacket evolve with time?

4. Charged particles in a magnetic field: In lectures, we studied the mo-
tion of an electron in a uniform magnetic field working in the Landau
gauge, A = (−By� 0� 0). With this gauge choice, the Hamiltonian may
be straightforwardly brought to a quantum harmonic oscillator form. In this
question, we will address the problem by working the “symmetric” gauge
A = (−By/2� Bx/2� 0). The advantage of this gauge choice is that it fa-
cilitates the development of the many-particle wavefunction in an aesthetic
and useful form.

�a) A spinless electron of charge q = −e is confined to the xy-plane
and subject to a perpendicular magnetic field B = Bêz. Working
in the symmetric gauge A = (−y� x� 0)B/2, show that the electron
Hamiltonian is given by

Ĥ =
1

2m

�

p̂x −
1

2
mωy

�2

+
1

2m

�

p̂y +
1

2
mωx

�2

�

where ω = eB
m denotes the cyclotron frequency. Physicists often choose to work

in dimensionless units setting
� = 1, etc. Think about what
this choice entails and, at each
stage of the problem, try to in-
fer how dimensionful parameters
can be restored.

�b) If units are chosen such that ω = m = � = 1, show that the Hamil-
tonian can be recast in the dimensionless form

Ĥ =
1

2

�
−i∂x −

y

2

�2

+
1

2

�
−i∂y +

x

2

�2

.

�c) Introducting the complex coordinate, z̄ = x + iy and the complex
conjugate, z = x − iy, the corresponding derivatives are given by
∂z̄ = 1

2
(∂x − i∂y), and ∂z = 1

2
(∂x + i∂y) where ∂z ≡

∂
∂z . From this

definition, confirm that The choice z = x − iy (as op-
posed to z = x + iy) is made
on purely aesthetic grounds – see
the wavefunction below. Also,
following convention in this sub-
ject, we have chosen to write the
complex conjugate as z̄ and not
z∗.)

[z� ∂z] = [z̄� ∂z̄] = −1� [z� ∂z̄] = [z̄� ∂z] = 0 .

Show that the operators,

a =
√

2
�
∂z̄ +

z

4

�
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√
2

�
−∂z +

z̄

4

�
�

b =
√

2
�
∂z +

z̄

4

�
� b† =

√
2

�
−∂z̄ +

z

4

�
�

fulfil the commutation relations [a� a†] = [b� b†] = 1 characteristic of
creation and annihilation operators. Applied to the Hamiltonian,
show that

Ĥ = a†a +
1

2
�
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independent of b, i.e. a quantum harmonic oscillator. As a result,
we can identify a Landau level Hamiltonian with the level set by
the eigenvalue, n of the number operator, n̂ = a†a.

�d) Show that the angular momentum operator takes the form,

L̂z = −(b†b− a†a)� .

Therefore, if we define the eigenvalues of L̂z as −m� (with the
sign following an accepted convention), the quantum numbers m
can take values m = −n�−n + 1� · · · � 0� 1� · · ·. The corresponding
(normalized) states of Landau level, n, and angular momentum, m,
are given by

|n�m� =
(b†)m+n

�
(m + n)�

(a†)n

√
n�

|0� 0� �

where |0� 0� denotes the zero angular momentum ground state of
the lowest Landau level.

�e) Going back to the definition of the annihilation operator, show that
the ground state in the real space representation is given by,2 Note that, for the ground state,

we must have a|0� 0� = b|0� 0� =
0.�r|0� 0� =

1
√

2π
e−z̄z/4 .

Finally, show that in the lowest Landau level,

�r|0�m� =
1

√
2π2mm�

zme−z̄z/4 �

i.e. aside from the Gaussian factor, the states of the lowest Landau
level are given by a polynomial in z – they are said to be analytic

functions of z.

�f) The last part of this problem anticipates our studies of the many-particle
fermionic system in chapter 8 and should not be attempted until this
ground is covered. In this chapter, we will show that the properly an-
tisymmetrized many-particle wavefunction of a non-interacting system
of N identical spinless electrons (fermions) is given by the Slater de-
terminant, ψ(r1� r2� · · ·) = detijφi(rj) where φi(r) denote eigenstates
of the single-particle problem.

Using the identity
�
�
�
�
�
�
�
�
�

1 1 1 · · ·
z1 z2 z3 · · ·
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1 z2

2 z2
3 · · ·
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...

...
. . .
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�
�
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�
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�

=
�

j<k

(zj − zk) �

known as a Vandemonde determinant, show that the ground
state wavefunction of the filled lowest Landau level is given by

ψ(r1� r2� · · ·) =
�

j<k

(zj − zk) exp

�

−
1

4

�

i

|zi|
2

�

.

2In the symmetric gauge, we therefore find that the Landau level states are localized in
both x and y directions. This contrasts with what was found from the Landau gauge condi-
tion where states were localized along only one direction. Of course, there is no contradiction
between these two representations: since the Landau levels have a huge degeneracy, we are
at liberty to reconstruct states within the basis.
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Note that, as required, the wavefunction is antisymmetric under the
exchange of any two fermions. This expression also emphasizes the
exclusion character of the fermionic system with the wavefunction
vanishing as any two particles move together.

5. Spin: This question develops the concept of a spinor wavefunction. Hint: You can find the relevant
spin operator by taking the dot
product of the vector σ with a
unit vector in the desired direc-
tion.

Using the Pauli matrices, σx, σy and σz, write down the operator corre-
sponding to a component of spin along the axis (θ� φ) in spherical polar
coordinates. Show that the eigenvalues of spin in this direction are ±�/2
(as expected), and deduce the corresponding wavefunctions. Hence, in-
fer the wavefunctions for particles whose spins are aligned along the +x,
−x, +y and −y directions.

6. Spin: This problem addresses the addition of spin angular momenta.

Consider two identical spin 1/2 fermions, and let χ+(i) represent the
state of particle i with spin up, and χ−(i) the state with spin down.
Write down the four possible states of the system which have definite
exchange symmetry.

Show that Ŝ2 = Ŝ+Ŝ− + Ŝ2
z − �Ŝz, where the spin raising and lowering

operators are given by Ŝ± = Ŝx ± iŜy. Using this result, or otherwise,
show that the four states of definite exchange symmetry are eigenstates
of Ŝ2 and find the corresponding eigenvalues and hence the total spin
quantum number for each state.

At a given moment, the system is in a state,

ψ =

�
2

3
χ+(1)χ−(2) +

�
1

3
χ−(1)χ+(2) .

What is the probability of a measurement of the total spin giving the
result S = 1?

Hint: Write the wavefunction
corresponding to spin +� in the
x direction using as a basis the
eigenstates of Ŝz. Then write the
time dependence of this wave-
function in the presence of the
uniform field B, and find the
fraction of the Sx = +� state in
this wavefunction at a later time.
You can also obtain the same re-
sult from a classical precession
argument.
You may note that J±|j�m� =
�[j(j+1)−m(m+1)]1/2|j�m±1�.

7. †Spin: This is a challenging problem which addresses several important
aspects of the coursework: quantum spin algebra, time-evolution, and spin
precession in a field.

A Stern-Gerlach apparatus is used as a filter which rejects para-H2 and
passes molecules of ortho-H2 (which has resultant nuclear spin one) with
spin component +� in the x direction travelling in the y direction. A
magnetic field B in the z direction acts over 20mm of path between two
such filters in series, and it is found that no molecules of kinetic energy
0.025eV emerge when B = 1.8(n + 1/2)× 10−3T, where n is an integer.
Explain this phenomenon and deduce a value for the magnetic moment
of the proton. (Part II 1966)

8. Spin: We have seen that the “ladder operator” formalism provides a frame-
work in which to define and classify the states of the quantum harmonic
oscillator. In the following, we will see that the same ladder operator for-
malism provides a representation of the quantum spin algebra. This repre-
sentation, known as the Holstein-Primakoff transformation, can be used to
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develop a controlled perturbation theory of spin Hamiltonians. For present
purposes, it also gives us an opportunity to practice the operator formalism
and spin algebra.

According to the quantum spin algebra, the spin operators are defined
by the commutation relations, [Ŝi� Ŝj ] = i��ijkŜ

k, where �ijk denotes the
antisymmetric tensor. According to the Holstein-Primakoff transforma-
tion,3 it is stated that the quantum mechanical spin S operators can be
represented by

Ŝ− = �

√
2S a†

�

1 −
a†a

2S

�1/2

� Ŝ+ = (Ŝ−)† � Ŝz = �(S − a†a) �

where the ladder operators a and a† obey the usual commutation rela- Hint: If you find yourself
expanding the square root,
you should stop and consider
whether there is a simpler
method...

tions, [a� a†] ≡ aa† − a†a = 1.4 Making use of these relations, show that
this definition is indeed consistent with the quantum spin algebra, i.e.
[Ŝ+� Ŝ−] = 2�Ŝz.

Comments: Physically, the ladder operators simply “count” the number
of “spin deviations” away from êz. For large spin, S – the analogue the
semi-classical limit for quantum mechanical spins – the Holstein-Primakoff
transformation affords the expansion, S− = �

√
2S a†+O(S−1/2) and S+ =

�
√

2S a + O(S−1/2). In this limit, quantum spin models typically become
bilinear (i.e. quadratic) in ladder operators and can be “diagonalized” (i.e.
solved) in the same manner as the quantum harmonic oscillator Hamiltonian.

9. Addition of angular momenta: The addition of two or more angular mo-
menta is a common problem which will arise this year in atomic, molecular,
nuclear and particle physics. It is therefore very important to understand
the basic principles.

Consider the addition of two angular momenta, �1 = 1 and �2 = 2. Ac-
cording to quantum mechanics, the possible values for the total angular
momentum quantum number L range from �1 +�2 to |�1−�2|, i.e. 3, 2, 1
in this case. Tabulate the possible values of the corresponding quantum
numbers m1, m2 and M = m1 +m2 (i.e. those relating to L̂z), and show
that the values of M correspond to the expected values of L. Repeat for
the case �1 = 3, �2 = 1.

For the case �1 = 2 and �2 = 1, the state |L = 3�M = 3� can be written
down straightforwardly as |�1 = 2�m1 = 2� ⊗ |�2 = 1�m2 = 1�. Use
ladder operators to construct explicitly the state |L = 3�M = 2� and
then orthogonality to construct the state |L = 2�M = 2� in terms of
the |�1�m1�⊗ |�2�m2� states. This method can obviously be extended to
construct all such states.

10. Addition of angular momenta:

Write down the commutation relations between the angular momentum
operators Jx, Jy, and Jz (hats not shown�).

3T. Holstein and H. Primakoff, Field dependence of the intrinsic domain magnetization

of a ferromagnet, Phys. Rev. 58, 1098 (1940).
4If you feel disturbed by the concept of the “square root of an operator”, you should

think of it as defined by a Taylor expansion in the argument, a
†
a

2s
.
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�a) Show that the operators J± = Jx ± iJy act as raising and lower-
ing operators for the z-component of angular momentum, by first
calculating the commutator [Jz� J±].

�b) State the allowed values of the total spin angular momentum for a
system of three electrons.

�c) The ‘coupled basis’ state |S = 3/2�mS = 3/2� (an eigenstate of
total spin) is also a state of the ‘uncoupled basis’, which may be You may note that J±|j�m� =

�[j(j+1)−m(m+1)]1/2|j�m±1�.denoted by | ↑↑↑� ≡ | ↑� ⊗ | ↑� ⊗ | ↑�. By an application of total
spin lowering operator, show that

|S = 3/2�mS = 1/2� =
1
√

3
(| ↓↑↑� + | ↑↓↑� + | ↑↑↓�) .

Advanced Quantum Physics


