L ecture 6

Quantum mechanical spin



Background

@ Until now, we have focused on quantum mechanics of particles
which are “featureless” — carrying no internal degrees of freedom.

@ A relativistic formulation of quantum mechanics (due to Dirac and
covered later in course) reveals that quantum particles can exhibit
an intrinsic angular momentum component known as spin.

@ However, the discovery of quantum mechanical spin predates its
theoretical understanding, and appeared as a result of an ingeneous
experiment due to Stern and Gerlach.



Spin: outline

@ Stern-Gerlach and the discovery of spin
@ Spinors, spin operators, and Pauli matrices
© Spin precession in a magnetic field

@ Paramagnetic resonance and NMR



Background: expectations pre-Stern-Gerlach

@ Previously, we have seen that an electron bound to a proton carries
an orbital magnetic moment,
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@ For the azimuthal component of the wavefunction, €™?, to remain
single-valued, we further require that the angular momentum ¢
takes only integer values (recall that —¢ < m < /).

@ When a beam of atoms are passed through an inhomogeneous (but
aligned) magnetic field, where they experience a force,

F=V(u-B)>=pu,(0.B;)é;

we expect a splitting into an odd integer (2 + 1) number of beams.



Stern-Gerlach experiment

@ In experiment, a beam of silver atoms were passed through
inhomogeneous magnetic field and collected on photographic plate.

@ Since silver involves spherically symmetric charge distribution plus
one 5s electron, total angular momentum of ground state has L = 0.

@ |f outer electron in 5p state, L = 1 and the beam should split in 3.
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Stern-Gerlach experiment

@ However, experiment showed a bifurcation of beam!
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@ Since orbital angular momentum can take only integer values, this
observation suggests electron possesses an additional intrinsic
“¢ =1/2" component known as spin.



Quantum mechanical spin

@ Later, it was understood that elementary quantum particles can be
divided into two classes, fermions and bosons.

@ Fermions (e.g. electron, proton, neutron) possess half-integer spin.

@ Bosons (e.g. mesons, photon) possess integral spin (including zero).



@ Space of angular momentum states for spin s = 1/2 .
is two-dimensional: /N
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@ General spinor state of spin can be written as linear combination,
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@ Operators acting on spinors are 2 X 2 matrices. From definition of
spinor, z-component of spin represented as,
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i.e. S, has eigenvalues +h/2 corresponding to
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Spin operators and Pauli matrices

@ From general formulae for raising/lowering operators,

J_lj;m) =/j( +1) = m(m = 1)Alj,m—1)
with 54+ = 5, £S5, and s = 1/2, we have

S.[1/2,-1/2) = h|1/2,1/2),  S_|1/2,1/2) = h|1/2,—-1/2)

@ i.e., in matrix form,
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@ Leads to Pauli matrix representation for spin 1/2, S = %ha
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Pauli matrices

@ Pauli spin matrices are Hermitian, traceless, and obey defining
relations (cf. general angular momentum operators):
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@ Total spin
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i.e. s(s+ 1)h?, as expected for spin s = 1/2.



Spatial degrees of freedom and spin

@ Spin represents additional internal degree of freedom, independent
of spatial degrees of freedom, i.e. [S,x] =[S,p] =[S,L] = 0.

@ Total state is constructed from direct product,
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@ In a weak magnetic field, the electron Hamiltonian can then be
written as
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Relating spinor to spin direction

For a general state a| T) 4+ 3| |), how do «, [ relate to
orientation of spin?

@ Let us assume that spin is pointing along the unit vector
n = (sinf cos p,sinfsinp, cosf), i.e. in direction (0, ).

@ Spin must be eigenstate of i - o with eigenvalue unity, i.e.

n, Ny — iny a\ [ «
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@ With normalization, |a]? + |3]?> = 1, (up to arbitrary phase),

(6)= (o )




Spin symmetry

a\ [ e ¥2cos(6/2)
g ] eiv/? sin(6/2)
@ Note that under 27 rotation,
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@ In order to make a transformation that returns spin to starting

point, necessary to make two complete revolutions, (cf. spin 1
which requires 27 and spin 2 which requires only 7!).




(Classical) spin precession in a magnetic field

Consider magnetized object spinning about centre of mass, with angular
momentum L and magnetic moment p = vL with v gyromagnetic ratio.
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@ A magnetic field B will then impose a torque

T=uxB=~ALxB=0L u

@ WithB=Bé,, and L, =L, +iL,, 0:Ly = —ivyBLy,
with the solution L, = LgLe_"VBt while 0;L, = 0.

@ Angular momentum vector L precesses about magnetic field
direction with angular velocity wg = —vB (independent of angle).

@ We will now show that precisely the same result appears in the study
of the quantum mechanics of an electron spin in a magnetic field.



(Quantum) spin precession in a magnetic field

@ Last lecture, we saw that the electron had a magnetic moment,

Korbit = —2—§quA_, due to orbital degrees of freedom.

@ The intrinsic electron spin imparts an additional contribution,
Hspin = 7S, where the gyromagnetic ratio,
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and g (known as the Landé g-factor) is very close to 2.

@ These components combine to give the total magnetic moment,
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@ In a magnetic field, the interaction of the dipole moment is given by

Hint = — K- B




(Quantum) spin precession in a magnetic field

@ Focusing on the spin contribution alone,

@ The spin dynamics can then be inferred from the time-evolution

operator, [¢(t)) = U(t)[1(0)), where

O(t) = e iHmet/h — exp [éfya' : Bt]

@ However, we have seen that the operator U(6) = exp[— L 0@, - L]
generates spatial rotations by an angle 6 about €.

@ In the same way, U(t) effects a spin rotation by an angle —vBt
about the direction of B!



(Quantum) spin precession in a magnetic field

5 B
U(t) = e Hintt/h — exp [éva : Bt]

@ Therefore, for initial spin configuration,
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o With B = B&,, U(t) = exp[57Bta], [¥(t)) = U(t)[4(0)),
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@ i.e. spin precesses with angular frequency wg = —vB = —gw_€,,
where w. = ££ is cyclotron frequency, (£ ~ 10! rads™!T71).



Paramagnetic resonance

|
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@ This result shows that spin precession
frequency is independent of spin orientation.

@ Consider a frame of reference which is itself
rotating with angular velocity w about é,.

@ If we impose a magnetic field Bg = Byé,, in the rotating frame, the
observed precession frequency is w, = —y(Bg + w/7v), i.e. an
effective field B, = By + w/ acts in rotating frame.

@ If frame rotates exactly at precession frequency, w = wg = —vBy,
spins pointing in any direction will remain at rest in that frame.

@ Suppose we now add a small additional component of the magnetic
field which is rotating with angular frequency w in the xy plane,

B = Byé, + Bi(é, cos(wt) — &, sin(wt))




Paramagnetic resonance

B = Byoé, + Bi(éx cos(wt) — €, sin(wt))

@ Effective magnetic field in a frame rotating with same frequency w
as the small added field is B, = (By + w/v)é, + B1é,

@ If we tune w so that it exactly matches the precession frequency in
the original magnetic field, w = wg = —yByg, in the rotating frame,
the magnetic moment will only see the small field in the x-direction.

@ Spin will therefore precess about x-direction at slow angular
frequency vB; — matching of small field rotation frequency with
large field spin precession frequency is “resonance” .



Nuclear magnetic resonance

@ The general principles exemplified by paramagnetic resonance
underpin methodology of Nuclear magnetic resonance (NMR).

@ NMR principally used to determine structure of molecules in

chemistry and biology, and for studying condensed matter in solid or
liquid state.

@ Method relies on nuclear magnetic moment of atomic nucleus,
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e.g. for proton v = gp where g, = 5.59.



Nuclear magnetic resonance

@ In uniform field, Bg, nuclear spins occupy
equilibrium thermal distibution with
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i.e. (typically small) population imbalance.

@ Application of additional oscillating resonant in-plane magnetic field
B,(t) for a time, t, such that

wit = g, wlz’yBl

(“m/2 pulse”) orients majority spin in xy-plane where it precesses at
resonant frequency allowing a coil to detect a.c. signal from induced
e.m.f.

@ Return to equilibrium set by transverse relaxation time, T».



Nuclear magnetic resonance

@ Resonance frequency depends on
nucleus (through ~) and is slightly
modified by environment ~~ splitting.

@ In magnetic resonance imaging (MRI), focus is on
proton in water and fats. By using non-uniform field,
By, resonance frequency can be made position
dependent — allows spatial structures to be recovered.




Summary: quantum mechanical spin

N\

@ |n addition to orbital angular momentum, L, quantum particles
possess an intrinsic angular momentum known as spin, S.

@ For fermions, spin is half-integer while, for bosons, it is integer.

@ Wavefunction of electron expressed as a two-component spinor,

) =[x e ek el )= ()7

@ In a weak magnetic field,

@ Spin precession in a uniform field provides basis of paramagnetic
resonance and NMR.



